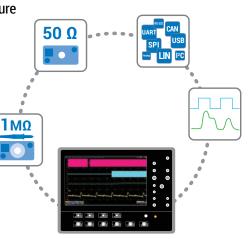
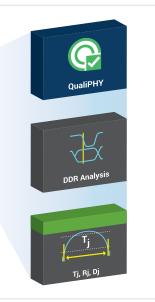


HIGH BANDWIDTH, UNIQUELY VERSATILE


Most Capability

Best for

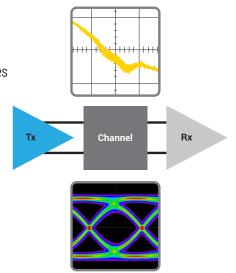
& DDR


The most complete feature set on a high-bandwidth oscilloscope

- Both 50 Ω and 1 MΩ inputs for widest probe support
- Mixed signal acquisition capability
- Comprehensive serial triggering and decoding

Unmatched high-speed serial tools

- Simple and powerful compliance test automation
- Interactive DDR Debug Toolkit
- Most complete eye diagram, jitter and noise analysis

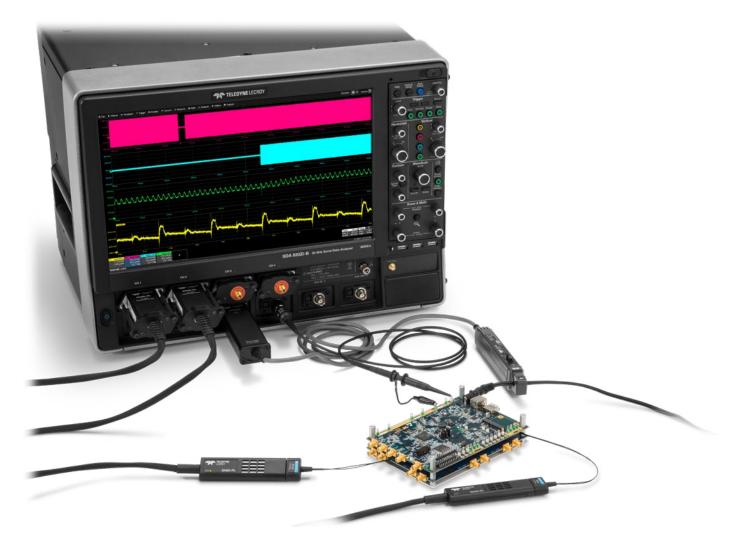


Analyze the Whole Link at Once

Serial Data

End-to-end link signal integrity analysis

- Import S-parameter files from WavePulser 40iX and other instruments
- De-embed fixtures and emulate channels
- Measure transmitter and receiver equalization effects



High Bandwidth, Uniquely Versatile

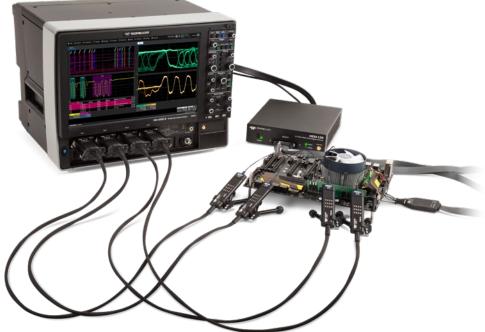
HIGHEST CAPABILITY

WaveMaster 8 Zi-B's unique combination of high-bandwidth performance (up to 20 GHz) and general purpose features enables the most compehensive validation and debug capabilities. This one oscilloscope platform covers low-speed and high-speed embedded systems, serial data analysis, and DDR debug.

50 Ω and 1 M Ω Inputs for Widest Probe Support

WaveMaster is the only high-bandwidth oscilloscope to also provide built-in 1 M Ω inputs. This permits direct connection of passive probes, and support for the widest variety of low voltage, high voltage and current probes, all without requiring the use of expensive, add-on external adapters that reduce accuracy and go missing when you need them.

Low- and High-speed Mixed Signal Acquisition Capability


Expand your acquisition reach with mixed-signal options for low-speed digital acquisitions with up to 36 channels and 500 MHz digital clock rates or high-speed digital acquisitions with up to 18 channels and 6 Gb/s digital clock rates.

Comprehensive Low-speed Serial Data Triggers/Decoders

Comprehensive low-speed serial data triggers and decoders, plus measure/ graph and eye diagram testing, provide the best causal analysis of low-speed events. Easily correlate low-speed serial interactions with high-speed serial data or other events.

BEST FOR SERIAL DATA AND DDR

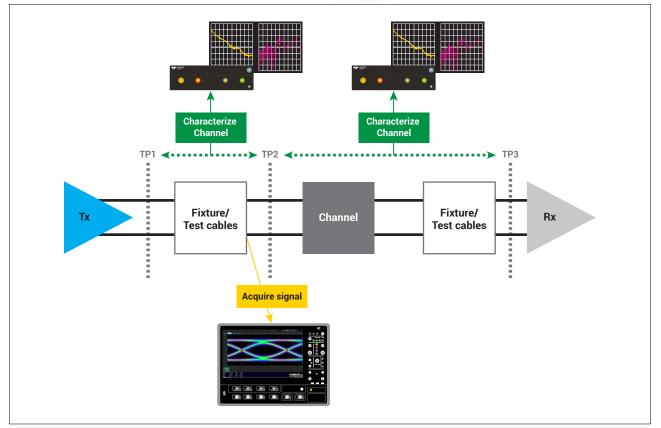
The WaveMaster 8 Zi-B is the best oscilloscope platform for high-speed serial data and memory compliance and debug. The combination of general-purpose capabilities, mixed-signal options, low-speed serial triggers/decoders and comprehensive compliance, analysis and debug software options puts you in the drivers seat.

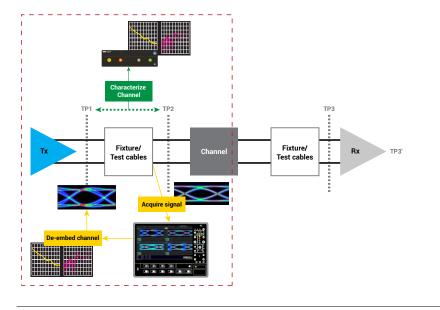
QualiPHY Automated Compliance Testing

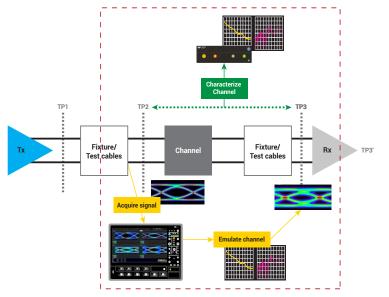
- Support for PCI Express[®], USB, HDMI[™], DisplayPort[™], Ethernet, Automotive Ethernet, DDR, and many other serial data standards
- Fully automated transmitter and receiver testing and receiver test calibration
- Step-by-step instructions and automatic report generation
- Automated pass/fail test reports

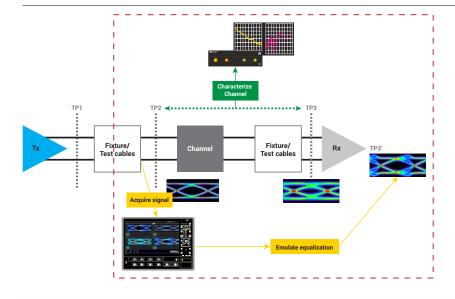
Most Complete Serial Data Analysis Toolset

- Multi-lane jitter and eye analysis
- LaneScape[™] comparison modes
- Vertical noise and crosstalk analysis
- Integrated equalization, emulation and de-embedding
- Virtual probing


Comprehensive DDR Test Suite


- Support for DDR2/LPDDR2 through DDR5/LPDDR4X
- JEDEC physical layer compliance test
- Debug Toolkits provide fast problem solving during the DDR design and integration cycle
- HDA125 High-speed Digital Analyzer for flexible, mixed-signal probing
- Unmatched probing versatility up to 30 GHz

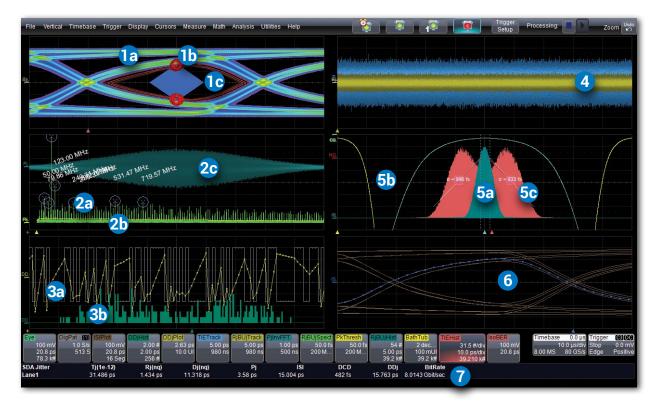

ANALYZE THE WHOLE LINK


Combining the WavePulser[®] 40iX High-speed Interconnect Analyzer, WaveMaster 8 Zi-B oscilloscope and SDAIII-CompleteLinQ option gives the most complete signal integrity analysis toolkit available. Quickly characterize the entire signal path from transmitter to receiver, acquire high-fidelity waveforms at a convenient test point, and then easily analyze the signal at any point of interest.

De-embed fixtures and test cables

- Measure S-parameter models using WavePulser 40iX, or import from other measurements or simulation tools
- Sophisticated Eye Doctor and VirtualProbe tools easily and accurately remove effects of fixtures and cables from acquired oscilloscope waveforms
- Apply the full SDAIII-CompeteLinQ toolkit to de-embedded waveforms for full eye, jitter and noise analysis directly at the output pins of the device under test

Emulate real-world channel losses


- WavePulser 40iX simplifies and speeds up accurate measurements of test channel loss profiles
- Channel model s-parameter files can be easily imported from the WavePulser 40iX or elsewhere into Eye Doctor and VirtualProbe tools in the oscilloscope
- Acquire waveforms at any point in the signal path, then use VirtualProbe to cleanly embed the effects of the channel
- Use the full analysis capability of SDAIII-CompleteLinQ to compare eye, jitter and noise measurements at multiple test points simultaneously

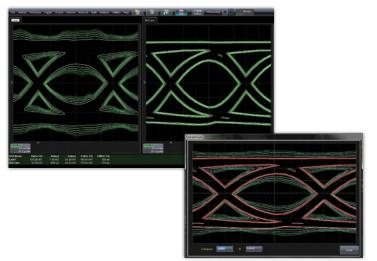
Emulate transmitter and receiver equalization

- SDAIII-CompleteLinQ with Eye Doctor enables the emulation of all common equalization types, including:
 - Transmitter emphasis
 - Receiver FFE
 - Receiver CTLE
 - Receiver DFE

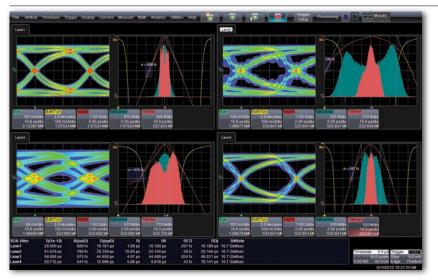
SDAIII-COMPLETELINQ

The SDAIII software option provides the most comprehensive jitter decomposition, eye diagram and analysis tools with advanced signal integrity tools for emulation, de-embedding and equalization simulation.

Key Attributes


- Eye diagram (a), eye mask failure
 (b) and IsoBER eye opening analysis (c)
- Jitter spectrum (a) with noise floor display (b) and inverse FFT of the periodic jitter (c)
- Data dependent jitter (DDj) plot for each bit in synch with pattern (a) and with histogram (b)
- Time interval error (TIE) jitter track analysis
- 5. Jitter histograms (a) with bathtub curves (b) and CDF plot (c)
- Intersymbol interference (ISI) plots pinpoint bit sequences that have high ISI and are sources of bit errors
- Jitter measurements table with full details for one or more "lanes" plus reference

Advanced Signal Integrity Tools


Complete set of tools for: channel emulation; fixture, cable or channel de-embedding/embedding; adding or removing emphasis; performing CTLE, FFE or DFE equalization.

SDA Signal Clock Eye Jitter M	Noise Crosstalk			Close
Copy Lane4	C3 Enabled: C3 Enabled: Custom Pre: 3.0dB	De-embed the Linear to the Lin	Clock Recovery 10.31 Gbit/s N L Fooddap	Eye leas. Jitter Meas. Joise dimmit

COMPREHENSIVE SERIAL DATA ANALYSIS

Use the unique crosstalk eye to view and compare noise in a way that cannot be done with a traditional eye diagram.

A comprehensive set of jitter measurements, extrapolations and decompositions, with associated views for complete understanding, provides the best capability to debug problems faster.

View noise measurements in both time and frequency domains for insight into sources of crosstalk leading to bit errors.

Fast Single or Multiple Eye Diagrams

- Up to four real-time and one reference comparison eye diagram, NRZ or PAM
- Single lane with multiple-point or multiconfiguration analysis
- Analyze multiple lanes simultaneously
- Fast eye diagram creation
- Reference lane simplifies multi-scenario testing
- IsoBER displays expected eye infringement to a user-settable bit error rate (BER)
- Crosstalk eye contour plots display the impact of excessive noise

Comprehensive Jitter Decomposition & Analysis

- Complete Tj, Rj and Dj decomposition numerics on up to four lanes/configurations plus a reference
- Three different jitter decomposition models
- Complete random (Rj) and non-data dependent jitter (Rj+BUj) parameters and views
- Comprehensive data dependent jitter (DDj) analysis, including DDj plots and histograms, digital pattern display, and ISI plot by pattern
- Periodic jitter (Pj) inverse FFT
- Other jitter parameters including bounded uncorrelated jitter (BUj) and odd-even jitter (OEj)

Vertical Noise & Crosstalk Analysis

- Tools for complete aggressor/victim analysis
- Measure, extrapolate and decompose vertical noise just as you do with (horizontal) jitter
- Noise tracks, histograms and spectrums providing deep insight into noise sources
- Crosstalk eye contour plot shows probabilistic extent of noise, both inside and outside the eye

COMPREHENSIVE DDR TEST SUITE

Teledyne LeCroy offers a full line of DDR test solutions for system bring-up, debug, performance analysis and compliance. Teledyne LeCroy's DDR test suite combines the right tools for every stage of development.

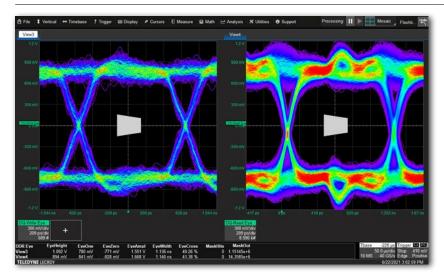

Physical Layer DDR Toolkit

The DDR Debug Toolkit provides test, debug and analysis tools for the entire DDR cycle. All DDR analysis can be performed simultaneously over four different measurement views.

Physical Layer Compliance

The QualiPHY DDR packages perform all clock, electrical and timing tests to conform to the JEDEC specification. Supports all versions of DDR/LPDDR.

Unmatched Probing Versatility


The HDA125 High-speed Digital Analyzer provides the highestperformance (18 digital inputs, up to 12.5 GS/s), most flexible mixed-signal solution for DDR debug and evaluation. Analog differential probes provide up to 20 GHz bandwidth. QuickLink probe tips work with both the HDA125 and analog probes.

COMPREHENSIVE DDR TEST SUITE

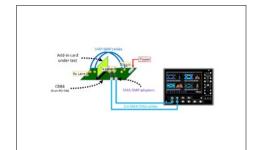
Effortless Burst Separation

- Automatic separation of Read and Write bursts eliminates time-consuming manual burst identification
- Separate bursts based on DQ-DQS skew or based on the command bus (when used with the HDA125)
- Bursted data jitter analysis
- Built-in DDR-specific measurements

Eye Diagram Analysis

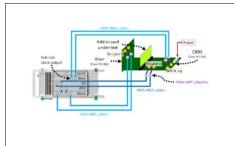
- Up to 10 simultaneous eye diagrams
- Standard or custom-defined pass/fail masks
- Mask violation indicators automatically identify and locate specific unit intervals where mask violations occurred
- Built-in measurements for eye height, eye width and eye opening provide quantitative understanding of system performance
- Compare performance across multiple testing views with simultaneous eye diagrams

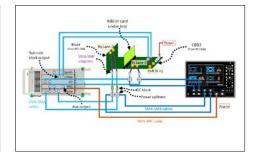
Enhanced Debug Capability with the HDA125


- Command bus digital acquisition capabilities
- Full DDR interface visibility simplifies transition from validation to debug
- Trigger on specific states of the command bus
- Command bus activity is tabulated and timecorrelated with the color-coded and labeled physical layer waveforms

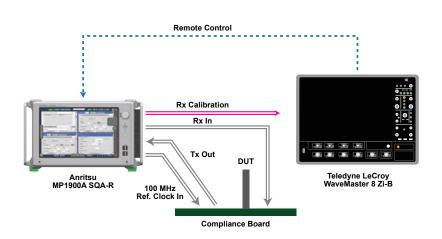
COMPLETE PCI EXPRESS® ELECTRICAL TEST SOLUTIONS

Teledyne LeCroy's PCI Express electrical test solutions combine superior instruments with sophisticated jitter, eye diagram, debug and compliance software for all versions of PCI Express.

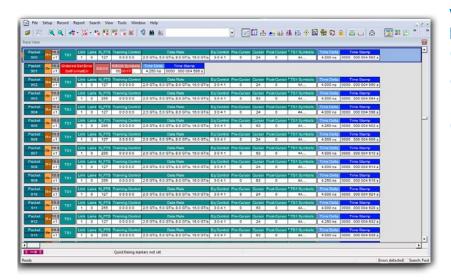

- Automated Transmitter, Receiver and Link Equalization (LEQ) testing with QualiPHY software options
- Visibility from physical layer through protocol operations
- WaveMaster/SDA 8 Zi-B is gold suite certified for all relevant PCI Express 3.0 (8 GT/s) tests


Transmitter (Tx) Testing

- Base specification and compliance testing for add-in cards and systems in CEM, M.2 and U.2 form factors
- QualiPHY fully automates collection and processing of transmitter waveforms
- Supports TF-PCIE4-CTRL controller for full fixture and DUT automation
- Debug electrical compliance issues faster with SDAIII-CompleteLinQ software


Receiver (Rx) Testing

- Receiver calibration and testing using the WaveMaster and Anritsu MP1900A BERT
- QualiPHY controls both the WaveMaster and MP1900A
- Use WavePulser 40iX for receiver channel characterization and calibration
- Single QualiPHY user interface for Tx and Rx testing


Link Equalization (LEQ) Testing

- Fully automated Tx and Rx LEQ testing using QualiPHY with SigTest integration
- Test, fixture and DUT automation for fast throughput without lots of manual steps
- Go directly from compliance test to cross-layer debug using ProtoSync on the WaveMaster and LTSSM analysis on the MP1900A

Superior PCIe[®] Test Solutions

- Approved PCI-SIG gold suite solution for PCIe electrical compliance test programs
- High accuracy and repeatability due to superior signal quality
- Fastest receiver test calibration
- Complete DUT and fixture automation

Visibility from Physical Layer Through Protocol Operations

- LTSSM logging and state-machine triggering
- ProtoSync integrates industry-standard protocol display and physical-layer analysis
- Go directly from Link Equalization compliance tests to deep debug

Looking for PCIe 4.0, 5.0, or 6.0?

- LabMaster 10 Zi-A oscilloscope supports electrical Tx and Rx compliance test solutions for PCIe 5.0, 4.0, 3.0 and below
- PAM4 analysis capability for future PCIe 6.0 technology and beyond
- ProtoSync protocol analysis software provides a view of the complete protocol stack, from physical layer to transaction layer

CrossSync[®]PHY FOR PCI EXPRESS[®]

Interoperability issues can lead to finger-pointing exercises that cost money and time-to-market. Teledyne LeCroy CrossSync PHY software and interposers merge the functions of your Teledyne LeCroy PCI Express protocol analyzer and oscilloscope - giving insight into link behavior that no other instrument can provide.

Validate and debug active link operation

- CrossSync PHY capable interposers enable observation of both electrical and protocol behavior without disturbing the link
- Sideband signals, reference clock and power rails are all easily accessible to oscilloscope probes
- Optional high-bandwidth oscilloscope probing points for PCI Express data lanes

Quickly resolve interoperability issues by capturing the entire protocol stack

- Trigger protocol analyzer and oscilloscope captures on the same high-level event
- Easily measure timing relationships between protocol and electrical domains
- Faster root-cause analysis means fewer costly finger-pointing exercises

Analyze link training with integrated physical and protocol views

- Observe electrical-level results of protocol-level commands
- Combined navigation means always knowing which protocol and electrical behaviors happen at the same time
- No single instrument can deliver this level of cross-layer insight into link training behavior

The CrossSync PHY software option for your Teledyne LeCroy oscilloscope enables precise, intuitive navigation between timecorrelated protocol analyzer and oscilloscope traces.

Oscilloscope timebase and protocol analyzer acquisition window remain synchronized while navigating through the combined acquisition, for total confidence in timing behavior.

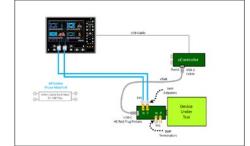
CrossSync PHY capability enhances Teledyne LeCroy's industry-leading set of PCI Express protocol analysis interposers by adding high-fidelity oscilloscope probing points with simple and convenient signal access.

Easily probe and observe:

- High-speed data signals
- Reference clock behavior
- Power rail voltage and current
- Sideband signals

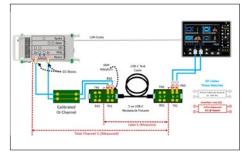
PCI Express 4.0 x4 M.2 M-Key Interposer

PCI Express 5.0 CEM x16 Interposer


USB AND USB TYPE-C® ELECTRICAL TEST SOLUTIONS

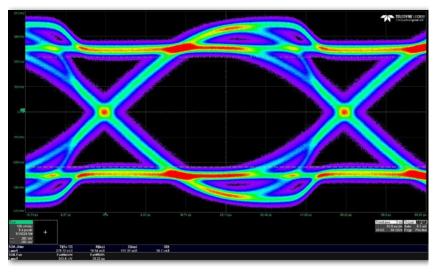
In 2011, Teledyne LeCroy became the first USB-IF approved "Gold Suite" for USB 3.0 at 5 Gb/s. Today, the USB Type-C connector carries multiple lanes each up to 40 Gb/s data supporting USB4[®] Version 2.0, USB4, USB 3.2, Thunderbolt[™] 3/4 and DisplayPort[™] 2 standards. Teledyne LeCroy continues to be the trusted leader with:

- USB-IF approved "Gold Suite" PHY Tx/Rx compliance testing
- VESA approved DisplayPort over USB Type-C compliance testing
- Up to 4 lanes (8 channels) of simultaneous acquistion
- The deepest signal integrity toolbox
- Unmatched PHY-logic and USB Type-C sideband debug



Fastest PHY Compliance

- QualiPHY software automates all USB-C standard Transmitter (Tx) and Receiver (Rx) compliance tests using a single, friendly user interface
- Accurate, repeatable Rx testing with Anritsu MP1900A BERT
- Support for both USB-IF and 3rd party fixtures and software tools
- Single QualiPHY user interface for Tx and Rx testing


Deepest SI Toolbox

- Choose either USB-IF SigTest or Teledyne LeCroy SDAIII analysis methodology
- Debug electrical compliance issues faster with SDAIII-CompleteLinQ eye diagrams, jitter and noise analysis software
- WavePulser 40iX simplifies and speeds up receiver channel characterization and calibration

PHY-logic & Sideband Debug

- See the whole link with CrossSync PHY for USB4 and Thunderbolt
- USB4 and USB 3.2/2.0 serial decode options provide decode of USB packets with graphical, intuitive, color-coded decode overlays
- ProtoSync integrates industrystandard protocol display
- USB-PD (Power Delivery) TDMP and DisplayPort-AUX DMP provide unmatched visibility of USB Type-C sideband signals for system debug

1.01.01.00.01.01

pe-C Device Test Fixture 1C

Jumper on CC1 for Tx1/Rx1 Jumper on CC2 for Tx2/Rx2

DEVICE

Type-C Compliance Load Board 5.6"

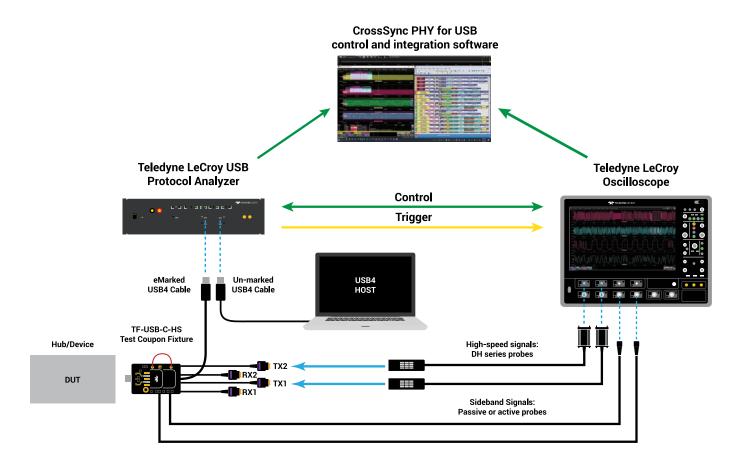
1m Cable

USB4 and Thunderbolt 3/4

- QPHY-USB4-TX-RX provides automated transmitter compliance test automation per the USB4 Gen2 (10 Gb/s NRZ), Gen3 (20 Gb/s NRZ) and Thunderbolt Gen2 (10.3125 Gb/s NRZ) and Gen3 (20.625 Gb/s NRZ) electrical Compliance Test Specifications (CTS)
- Integrates USB4 ETT for DUT control with the Wilder-Tech USB4 test controller, and Thunderbolt electrical scripts with Thunderbolt 3 controllers
- Fully automates receiver calibration and test with the Anritsu MP1900A high-speed BERT

USB 3.2

- QPHY-USB3.2-TX-RX fully automates the USB 3.2 Tx and Rx CTS for Gen1 (5 Gb/s) and Gen2 (10 Gb/s), LFPS Tx/Rx and SCD/LBPM tests
- Supports a variety of generators for Tx compliance pattern control including Teledyne Test Tools AFG, Wilder-Tech USB Type-C controllers and Anritsu MP1900A BERT
- Fully automates Rx calibration and test with the Anritsu MP1900A high-speed BERT solution



DisplayPort over USB Type-C

- QPHY-DP2-SOURCE software automates source (Tx) testing for all DisplayPort 2 (UHBR20, UHBR13, UHBR10) and 1.4a (HBR3, HBR2, HBR, RBR) data rates up to four lanes
- QPHY-DP2-SINK software automates DisplayPort 2 and 1.4a sink (Rx) calibration and testing with the Anritsu MP1900A highspeed BERT solution
- DPAUX DMP provides AUX channel decode, serial data measurements and physical layer measurements
- Supports all VESA approved test fixtures including Standard/Enhanced DP, mDP and USB Type-C

CrossSync[®]PHY FOR USB4[®] AND THUNDERBOLT[™]

Interoperability issues can lead to finger-pointing exercises that cost money and time-to-market. Teledyne LeCroy CrossSync PHY software merges the functions of your Teledyne LeCroy protocol analyzer and oscilloscope - giving insight into link behavior that no other instrument can provide.

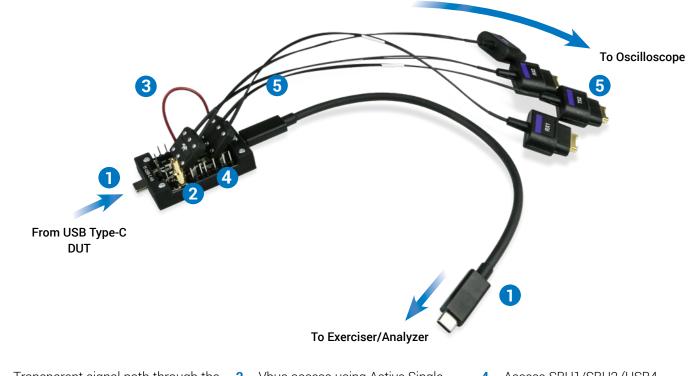
Validate and debug active link operation

- TF-USB-C-HS Test Coupon Fixtures enable observation of both electrical and protocol behavior without disturbing the link
- USB Type-C Sideband signals are all accessible using passive or active probes
- High-bandwidth oscilloscope probing points for USB data lanes

Quickly resolve interoperability issues by capturing the entire protocol stack

- Trigger protocol analyzer and oscilloscope captures on the same high-level event
- Easily measure timing relationships between protocol and electrical domains
- Faster root-cause analysis means fewer costly finger-pointing exercises

Analyze link training with integrated physical and protocol views


- Observe electrical-level results of protocol-level commands
- Combined navigation means always knowing which protocol and electrical behaviors happen at the same time
- No other solution can deliver this level of cross-layer insight into link training

The CrossSync PHY software option for your Teledyne LeCroy oscilloscope enables precise, intuitive navigation between time-correlated protocol analyzer and oscilloscope traces.

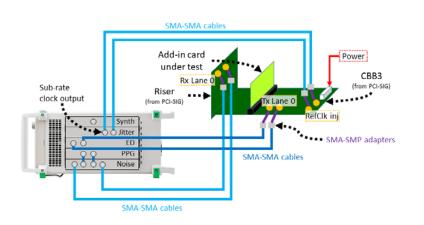
Oscilloscope timebase and protocol analyzer acquisition window remain synchronized while navigating through the combined acquisition, for total confidence in timing behavior.

								Diline 1
LeCity MOM-25-A					Service Letting USE Process Clarke	- USH / 1272 / PG - BETR - EDUbertur	conditional Distances 19.3 Province Percent	101210 Colorigen - 2222, 12, 13, 16, 16, 16, 16, 16
Vetical - Timebase 1 Tex	er 📾 Display 🖌 Carsons 🗄 N	Dataseta - El Mathe Lor A	state of this is the			a Report Search view Window		
The Codewo								> / · 回一· 20 日 20 月 20 小田・ 20 50
\$4052	10000 M			1	A 2 3 B . A &	12 12 13 13 15 15 15	· · · · · · · · · · · · · · · · · · ·	8 22 · 22 · 23 · 23 · 11 *
			and sold in the second second	1	• Meas			
	and the second se			-	Packet Left 34311 3481	10 10 L1 BLOOP	Dymbols Durinteen	Time Time (Sum) 106.000 MS 6 . 208.606 4
A DATE OF A DESCRIPTION	NAME AND ADDRESS OF TAXABLE PARTY.	the second state and show on the last	AND ADDRESS OF THE OWNER OF	ACCRET AND ADDRESS OF	Packet Lot		56 bytes 104 200 ms	Trea Marcia
40 m 6485 m	A152 M	3.952 cm	5450 15	A811 m	34514 "Left"		54 bytes 98.200 ms	0.000 ms 6, 208 000 5
					Packet Left 34515 1.4P	10 12 Lt BLOOD	Symbols Duration 254 bytes 98,200 ms	Tese Stamp 6 200 606 564
131 Ordenet Sen	112 Ordend Sets				Packet Let	A PROPERTY AND		
Accession in the local data	A CONTRACTOR OF THE OWNER OF	and the state of the state of the			34518 "Lett"	D 12 LI START R	S FEC & bytes 1.660	
No. Stand	and the second se				44 Packets		181 LOT LAN NUM	LIBTE DEE BOR
And in the owner of the owner.	or and the state of the second second	SPICE MARKED AND A		and the second se	34512-34650	1.00" FEC	Contraction of the local division of the loc	enge Lane env 151 (xxx2) 6
				1411/5	Pucket Lot 34131 "Left"	D 12 LD START_R	A FEC 4 bytes 1 610	
1052	STATUSE	TC BI Paters		100	60 Packots	Lot 40 LO	LAT LANS NUM	UIT2 ITTO MORE
					34622-34727	1.48" M 42 (FEC		eingle Lane ony TS1 (0:0F2)
a final					Packet Right 34539 'Poph"	H 22 LI START_R	A JEC A Dytes 1500	ns 6 205 605 712
	/ march	Second Second	Constant of	300	31 Packets	Reft CICILLI	LIT LINKING	LITZ TSID DOR
#29 pt 6592 pt	A158 pt	2119.00	6597.04	477.0	34545-34610	"Right" 12 [FEC	single Lane only Lane 1	2 Larves supported TS1 0x0F2
		101 12			Packet Right 34546 'Right'	H 12 LD 3L062	Symbols Duration 146 bytes 108 200 M	Time (itamp 6, 200 006 724
Here - 04100 / 5664 5494-040				NUMBER OF T	Packat Roote		Cuta Durat	Ion Time Stamp
Ten Dent				11/1	34596 'Right'		4 bytes 1 550	m 6.201.605.830
m had	V V	North M	-		17 Packeta 3.0597-3.4658	Right" G3 L0	101 LOT Lone Num single Lane only Lane 0	LUTZ TOT LOR 2 Lares successed TS1 (NOF2)
					47 Packeta	Rept		1072 1073 000
				Care of a	34603-34810	"Hote" #2 FEC	182 single Lane only Lane 1	2 Lanes successo TS2 0:092
Time -Protocol - Messa	Deta		CRC Status		33 Packets	Lan And Lt .	IBT LAT LANKING	1872 1513 MOR
6.200087 a 15884 Synch	ck Ordered S				54962-34767	1,eff 12 FEC		[angle Lans only] TE2 [0x0F2] 6
6.238687 s USBA- START 6.238687 s USBA- TD1 O	RS-FEC B&P a bx0F0F0F0F send Sm(TS1 a 0x00010110 0000	00002 0100010110 000000F	20. 4		57 Packels 34007-34020	Right C3 L0	192 single Lane only Lane 0	2 Lanes supported T12 0x0F2
200 1200 1200 1200 1200 1200 1200 1200	REFECTAP. A MOTORDE	No. of the second s		Tabler Ma Ma	18 Pacette		101 10000	1812 5351 9696

CrossSync PHY capability enhances Teledyne LeCroy's industry-leading Protocol Analyzer/Exercisers by adding high-fidelity oscilloscope probing points with simple and convenient signal access using USB Type-C Test Coupon Fixtures.

- Transparent signal path through the test coupon fixture's USB-C Plug, Receptacle, and included 0.3 meter USB Type-C cable
- 2. Vbus access using Active Single Ended or Voltage Rail Probe
- Current loop for measuring Vbus current through the test coupon fixture
- Access SBU1/SBU2 (USB4 Sidebands and DP-AUX), CC1/ CC2 (Power Delivery), and D+/D-(USB1.1/2.0) signals using square pins
- High-speed TX1/TX2 and RX1/RX2 signals captured using a permanently attached DH-SI Series probe tips

QUALIPHY AUTOMATED SOFTWARE TEST FRAMEWORK


QualiPHY is Teledyne LeCroy's automated test framework for performing standardized tests on high-speed serial interfaces. QualiPHY automation is available for PCI Express, USB, DDR, DisplayPort, HDMI and other technologies - for a full list, see our Oscilloscope Features, Options, and Accessories catalog.

Setup	Configuration	Test Selector	Variable Setup	Linits			
,	Configuration	Teat Delector	Vanaure Strap	Connes			
DUT Ty	pe		Ports		Analysis Method /	/ SigTests Versions	
USB4 Router Assembly USB4 Captive Device		Port A		LeCroy - SD			
~	hunderbolt3 Port		Port 8		D: \Applications \USB4\SigTest_USB4\USB4_SigTest_rev0p5.		
Selecte	d Speeds		Lanes to Test				
	en2 (10 Gbs/s)						
	en2 Legacy (10.31	125 Gbs/s)	⊡Lane0				
	en3 (20 Gbs/s) en3 Legacy (20.62	TECH (4)	⊡Lane1				
	ero cegacy (20.03	complet					
	tion Settings						
	couire Live						
~	se Saved Wavefor	115					
	Waveform Path:	D: Wavefor	ms'(US84				

Simplified Setup

QualiPHY dialogs help the user configure all aspects of test execution, including:

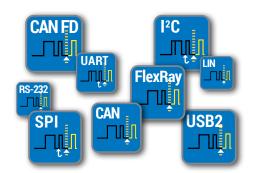
- Selecting the set of tests to run
- Configuring test parameters
- Customizing limits
- Options to stop after each test or execute sequentially

TELEDYNE

Streamlined Test Execution

QualiPHY guides the user though connection and execution of each test, resulting in increased repeatability.

- Clear, informative connection diagrams help simplify complex test setups and reduce mistakes
- Dialogs explain test execution and required Device Under Test (DUT) settings
- Simple, powerful Host Program Control interface enables complete automation of QualiPHY with external scripting environments (for selected QualiPHY products)


Informative Reporting

QualiPHY produces comprehensive reports documenting test results.

- Save reports in PDF or HTML format
- Screenshots and tabular results included
- Summary table at the start of the report makes it easy to tell pass/fail results at a glance

COMPREHENSIVE LOW-SPEED SERIAL SOLUTIONS

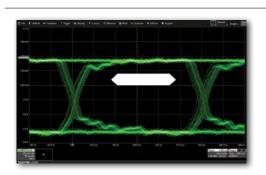
Teledyne LeCroy's Trigger (T), Decode (D), Measure (M) or Graph (G), and Eye Diagram (E) and Physical Layer (P) options are the best of their kind. Visit **teledynelecroy.com/tdme** for complete details.

Highest Performance Triggers

Designed by people who know the standards, with the unique capabilities you need to isolate unusual events.

- Powerful, flexible, unique
- Conditional data setup
- Support for proprietary protocols

The Most Intuitive Serial Decoder


Decoded protocol information is color-coded and transparently overlaid for an intuitive, easy-to-understand visual record with a single time-interleaved table with touch to zoom.

- Intuitive, color-coded overlays
- Pattern search
- Interactive table summarizes results

Automated timing measurements quickly validate cause and effect and serial data digital-to-analog (DAC) converter enhances understanding.

- Automated timing measurements
- Serial data DAC and graphing tools
- Bus status measurements

Eye Diagrams and Physical Layer Testing

Rapidly display an eye diagram of low-speed serial data signals. Eye parameters quantify system performance, and eye masks identify anomalies.

- Up to 4 simultaneous eye diagrams
- Eye measurements and masks
- Advanced PHY measurements

HIGH BANDWIDTH DIFFERENTIAL PROBES

The DH series of 8 to 30 GHz active differential probes provides high input dynamic range, large offset capability, low loading and excellent signal fidelity with a range of connection options.

General Purpose Probing up to 30 GHz

Teledyne LeCroy's DH series of 8 GHz to 30 GHz differential probes offer the combination of bandwidth, input range and offset capability to address any high-speed probing requirement from debugging serial data interfaces to validating DDR memory systems.

Exceptional Signal Fidelity

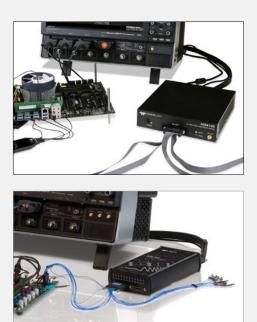
DH series probes provide superior loading characteristics and are calibrated with a custom "fine-tuned" frequency response. The ultra-low loading and flat frequency response ensure accurate measurements.

Wide Variety of Tips

Two 30 GHz solder-in leads let you choose between a 3.5 Vpp input range for general-purpose applications, or high sensitivity with exceptionally low noise. Also available are a 1-meter long 16 GHz high-temperature tip, a 16 GHz handheld browser tip and an 8 GHz QuickLink adapter for connecting mixed-signal probe tips.

Tip Identification

Each DH series tip has its own data onboard - the oscilloscope software automatically selects the correct tip type and precisely corrects for its effects. The result is superior signal fidelity and superior ease-of-use.


Digital Logic Probing Options

HDA125 High-speed Digital Analyzer

The HDA125 turns your Teledyne LeCroy oscilloscope into the highest-performance, most flexible mixed-signal solution with 12.5 GS/s digital sampling rate (3 GHz digital clock rate) on 18 input channels and the QuickLink probing solution. Ideal for validation of DDR interfaces.

MS-500-36 Mixed Signal Oscilloscope Option

The MS-500-36 adds up to 36 digital channels for acquisition of digital signals at up to a 500 MHz clock rate (2 GS/s digital sample rate) with up to 50 Mpts/Ch for complete mixed-signal acquisition capability.

BROAD RANGE OF PROBING SOLUTIONS

WaveMaster 8 Zi-B oscilloscopes support a broad range of probes for a variety of applications.

Differential Probes (200 MHz – 1.5 GHz)

Wide dynamic range, low loading and excellent noise performance. From 200 MHz to 1.5 GHz. Specialty AP033 provides 10x gain and high CMRR.

Differential Probes (4 – 6 GHz)

5 Vp-p dynamic range with ±3 V offset and low noise and loading. Solderin, browser, QuickLink, Quick Connect, square pin and HiTemp leads/tips.

Differential Probes (8 – 30 GHz)

For serial data, DDR or other high-speed signals. Standard and highsensitivity solder-in, HiTemp, and QuickLink for mixed-signal probing.

60 V Common Mode Differential Probes

The ideal probes for lower voltage GaN power conversion measurement with the highest accuracy, best CMRR and lowest noise. Up to 1 GHz.

High Voltage Differential Probes

1 kV, 2 kV and 6 kV CAT safety rated models. Widest differential voltage ranges, exceptional CMRR, low noise, 1% gain accuracy.

High Voltage Fiber Optically-isolated Probes

Measures small signals floating on an HV bus. Highest CMRR, low DUT loading with optical isolation.

High Voltage Passive Probes

1 kV to 6 kV ratings. Provides ground-referenced high voltage measurements in a wide range of applications.

Active Voltage Probes

1 to 4 GHz models. High signal fidelity and low circuit loading (<1 pF tip capacitance), ± 8 V dynamic range, ± 12 V offset.

Active Voltage/Power Rail Probe

 $4~{\rm GHz}$ bandwidth, $\pm 30~V$ offset, $\pm 800~mV$ dynamic range. High DC input impedance and low noise/attenuation for power rail probing.

Current Probes

For AC, DC and impulse current measurements. Utilizes combination of Hall effect and transformer technology. Up to 500 A, up to 100 MHz.

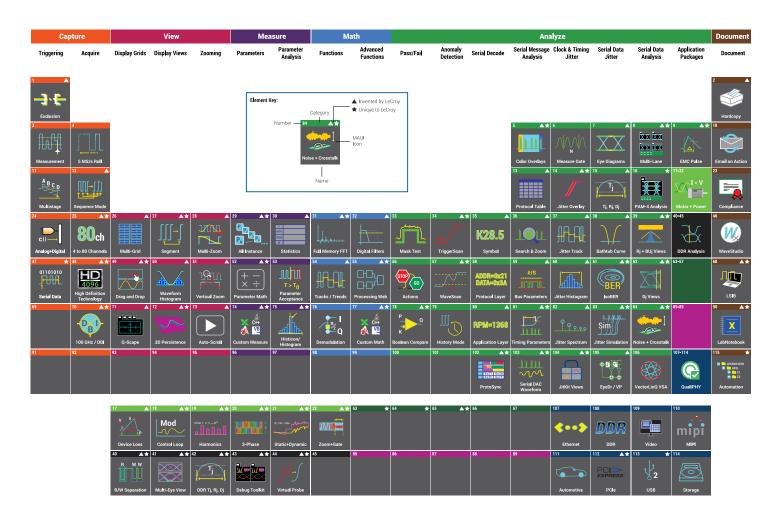
Rogowski Coil Probes

Wide frequency range and small sense coils for maximum flexibility. From 300 to 6000 Amps, as low as 0.1 Hz to as high as 30 MHz.

Transmission Line Probes

High-bandwidth passive probe for use with 50 Ω inputs. DC to 7.5 GHz with 0.25 pF input capacitance. 10x or 20x attenuation.

Probe and Current Sensor Adapters


Change between the different Teledyne LeCroy Oscilloscope input types or provide simple interface to 3rd-party probes.

Passive Probes

10x attenuating with 10 $\mbox{M}\Omega$ input resistance. Ideal for low-frequency signals.

POWERFUL, DEEP TOOLBOX

Our heritage

Teledyne LeCroy's 50+ year heritage is in processing long records to extract meaningful insight. We invented the digital oscilloscope and many of the additional waveshape analysis tools.

Our obsession

Our tools and operating philosophy are standardized across much of our product line. This deep toolbox inspires insight; and your moment of insight is our reward.

Our invitation

Our Periodic Table of Oscilloscope Tools explains the toolsets that Teledyne LeCroy has deployed in our oscilloscopes. Visit our interactive website to learn more about them. teledynelecroy.com/tools

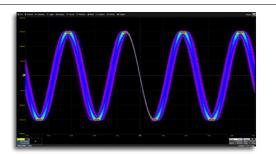
MAUI STUDIO - WORKS WHERE YOU ARE

Unleash the power of a Teledyne LeCroy oscilloscope anywhere, using a PC with MAUI Studio Pro. Work remotely from your oscilloscope and collaborate with ease.

Flexibility to Work Anywhere

MAUI Studio provides the flexibility to remotely work anywhere, and allows anyone anywhere to execute real-time analysis by connecting to an oscilloscope through an Ethernet connection or by analyzing a saved LabNotebook.

Collaborate with Ease


Using MAUI Studio, you can share a LabNotebook file saved from an oscilloscope with all of your colleagues, and everyone will have access to the same software options that are found on your oscilloscope.

The Power of MAUI Studio

Get all the unbelievable analytical capabilities of your oscilloscope on your PC. MAUI Studio has all the analysis tools needed to analyze complex waveform data, enabling your lab's oscilloscopes to be freed up for other activities.

Oscilloscope MAUI Studio Pro Ethernet Connection

Remote Connection

- Connect to an oscilloscope through an Ethernet connection
- Transfer waveforms and setups from an oscilloscope to MAUI Studio Pro
- Transfer setups from MAUI Studio Pro to an oscilloscope
- Import software options by establishing a remote connection to an oscilloscope

Offline Analysis

- Recall a LabNotebook file to analyze saved waveforms, measurements and setups
- Import software options by recalling a LabNotebook file
- Have access to the same software found on your oscilloscope

Arbitrary Function Generator

- Generate advance waveforms using the AFG
- Easily generate a PAM4 signal
- Add jitter to a clock signal to simulate real-world signal integrity impairments

	WaveMaster 804Zi-B (SDA)	WaveMaster 806Zi-B (SDA)	WaveMaster 808Zi-B (SDA)
Vertical System			
Analog Bandwidth @ 50 Ω (-3 dB) (ProLink Input)	4 GHz (≥ 10 mV/div)	6 GHz (≥ 10 mV/div)	8 GHz (≥ 10 mV/div)
Analog Bandwidth @ 50 Ω (-3 dB) (ProBus Input)	3.5 GHz (≥ 10 mV/div)	3.5 GHz (≥ 10 mV/div)	3.5 GHz (≥ 10 mV/div)
Analog Bandwidth @ 1 MΩ (-3 dB) (ProBus Input)	500 MHz (typical, ≥ 2 mV/div)		
Rise Time (10–90%, 50 Ω - test limit)	95 ps (test limit, flatness mode)	63 ps (test limit, flatness mode)	49 ps (test limit, flatness mode)
Rise Time (20–80%, 50 Ω - typical)	71 ps (flatness mode)	47 ps (flatness mode)	37 ps (flatness mode)
Input Channels	4 (Any combination of ProLink and Pro	Bus inputs)	
Vertical Resolution	8 bits; up to 11 bits with enhanced res		
Effective Number of Bits (ENOB) **	6.5	6.2	6.0
Vertical Noise Floor (rms, typical, 50) 1 mV/div	0.21 mV	0.26 mV	0.3 mV
2 mV/div	0.21 mV	0.26 mV	0.3 mV
5 mV/div	0.21 mV	0.26 mV	0.3 mV
10 mV/div	0.21 mV	0.26 mV	0.3 mV
20 mV/div	0.33 mV	0.41 mV	0.47 mV
50 mV/div	0.75 mV	0.93 mV	1.05 mV
100 mV/div	1.47 mV	1.83 mV	2.08 mV
200 mV/div	3.11 mV	3.89 mV	4.48 mV
500 mV/div	7.47 mV	9.32 mV	4.48 mV 10.62 mV
1 V/div	15.04 mV	9.32 mV 18.66 mV	21.11 mV
** Measured at 50 mV/div, 7 divisions (87.5%		10.00111	Δ1.11111
Sensitivity	50 Ω (ProLink): 2 mV–1 V/div, fully var 50 Ω (ProBus): 2 mV–1 V/div, fully var 1 MΩ (ProBus): 2 mV–10 V/div, fully v	iable	
DC Vertical Gain Accuracy (Gain Component of DC Accuracy)	±1% F.S. (typical), offset at 0 V; ±1.5% I	F.S. (test limit), offset at 0 V	
Channel-Channel Isolation	DC to 10 GHz: 50 dB (> 315:1) 10 to 15 GHz: 46 dB (> 200:1) 15 to 20 GHz: 40 dB (> 100:1) (For any two ProLink input channels, same or different V/div settings, typical)		
Offset Range	50 Ω (ProLink): ±500 mV @ 2 mV/div−100 mV/div ±4 V @ > 100 mV/div−1 V/div		
	50 Ω (ProBus): ±750 mV @ 2 mV/div−100 mV/div ±4 V @ > 100 mV/div−1 V/div		
	1 MΩ ±1 V @ 2 mV/div−140 mV/div ±10 V @ 142 mV/div−1.40 V/div ±100 V @ 1.42 V/div−10 V/div		
DC Vertical Offset Accuracy	$\pm(1.5\% \text{ of offset setting} + 1.5\% \text{ ES.} + 1$	mV) (test limit)	

DC Vertical Offset Accuracy ±(1.5% of offset setting + 1.5% F.S. + 1 mV) (test limit)

	WaveMaster 813Zi-B (SDA)	WaveMaster 816Zi-B (SDA)	WaveMaster 820Zi-B (SDA)
Vertical Contant	81321-B (SDA)	OTOZI-B (SDA)	62021-B (SDA)
Vertical System			
Analog Bandwidth @ 50 Ω (-3 dB) (2.92 mm Input)			
Analog Bandwidth @ 50 Ω (-3 dB) (ProLink Input)	13 GHz (≥ 10 mV/div)	16 GHz (≥ 10 mV/div)	20 GHz (≥ 10 mV/div)
Analog Bandwidth @ 50 Ω (-3 dB) (ProBus Input)	3.5 GHz (≥ 10 mV/div)	3.5 GHz (≥ 10 mV/div)	3.5 GHz (≥ 10 mV/div)
Analog Bandwidth @ 1 MΩ (-3 dB) (ProBus Input)	500 MHz (typical, ≥ 2 mV/div)		
Rise Time (10–90%, 50 Ω - test limit)	32.5 ps (test limit,	28.5 ps (test limit,	22 ps (test limit,
	flatness mode)	flatness mode)	flatness mode)
Rise Time (20–80%, 50 Ω - typical)	24.5 ps	21.5 ps	16.5 ps
	(flatness mode)	(flatness mode)	(flatness mode)
Input Channels	4 (Any combination of ProLink and Pro		
Vertical Resolution	8 bits; up to 11 bits with enhanced reso		
Effective Number of Bits (ENOB) **	5.9	5.7	5.4
Vertical Noise Floor (rms, 50 Ω)	0.5	0.1	0.1
1 mV/div	0.37 mV	0.43 mV	0.49 mV
2 mV/div	0.37 mV	0.43 mV	0.49 mV
5 mV/div	0.37 mV	0.43 mV	0.49 mV
10 mV/div	0.37 mV	0.43 mV	0.49 mV
20 mV/div	0.56 mV	0.65 mV	0.73 mV
50 mV/div	1.23 mV	1.45 mV	1.57 mV
100 mV/div	2.41 mV	2.86 mV	3.04 mV
200 mV/div	5.35 mV	6.34 mV	7.27 mV
500 mV/div	12.39 mV	14.26 mV	15.41 mV
1 V/div	24.31 mV	28.63 mV	30.26 mV
** Measured at 50 mV/div, 7 divisions (87.5%			
Sensitivity	50 Ω (ProLink) : 2 mV-1 V/div, fully		: 2 mV-1 V/div, fully variable
	variable (2–9.9 mV/div via zoom)	(2-9.9 mV/	div via zoom)
	50 Ω (ProBus): 2 mV−1 V/div, fully variable		: 2 mV–1 V/div, fully variable /div via zoom)
	1 MΩ (ProBus): 2 mV-10 V/div,		/-1 V/div, fully variable
	fully variable		/-10 V/div, fully variable
DC Vertical Gain Accuracy (Gain Component of DC Accuracy)	±1% F.S. (typical), offset at 0 V; ±1.5% F		
Channel-Channel	DC to 10 GHz: 50 dB (> 315:1)		
Isolation	10 to 15 GHz: 46 dB (> 200:1)		
ISUIALIUTI			
	15 to 20 GHz: 40 dB (> 100:1)		
	(For any two ProLink input channels, sa	arrie or	
	different V/div settings, typical)		
Offset Range	50 Ω (ProLink):		
	±500 mV @ 2–100 mV/div		
	±4 V @ > 100 mV/div−1 V/div		
	50 Ω (ProBus):		
	±750 mV @ 2–100 mV/div		
	±4 V @ > 100 mV/div−1 V/div		
	1 MΩ:		
	±1 V @ 2–140 mV/div		
	±10 V @ 142 mV-1.40 V/div		
	±100 V @ 1.42 V-10 V/div		
DC Vertical Offset Accuracy	±(1.5% of offset setting + 1.5% F.S. + 1	mV) (test limit)	
	±(1.0% 01 013ct 3ctting + 1.0% 1.3. + 1		

	WaveMaster 804Zi-B (SDA)	WaveMaster 806Zi-B (SDA)	WaveMaster 808Zi-B (SDA)				
Vertical System							
Maximum Input Voltage	50 Ω (ProLink): ±2 V max. @ ≤ 100 mV/div, 5.5 V _{rms} 50 Ω (ProBus): ±5 V max., 3.5 V _{rms} 1 MΩ (ProBus): 250 V max. (peak AC: < 10 kHz + DC)						
Input Coupling	ProLink Inputs: 50 Ω: DC, GND ProBus Inputs: 1 MΩ: AC, DC, GND; 50 Ω: DC, GND	50 Ω: DC, ĠND ProBus Inputs:					
Input Impedance	ProLink Inputs: 50 Ω ±2% for ≤ 100 mV/div, 50 Ω ±3% ProBus Inputs: 50 Ω ±2% or 1 MΩ 16 pF, 1 MΩ 11						
Bandwidth Limiters	20 MHz, 200 MHz, 1 GHz	20 MHz, 200 MHz, 1 GHz, 4 GHz	20 MHz, 200 MHz, 1 GHz, 4 GHz, 6 GHz				
Rescaling	radian, arcdegr, arcmin, arcsec, cycle s2, in/s2, ft/s2, g0; Volume: liters, cu ounce, pound; Pressure: pascal, bar, watts, volt-amperes, volt-amperes re siemen/meter, power factor; Magnet	niles; Mass: grams, slugs; Temperature: c is, revolutions, turns; Velocity: m/s, in/s, f bic meters, cubic inches, cubic feet, cubic atmosphere (technical), atmosphere (sta active, farad, coulomb, ohm, siemen, volt, ic: weber, tesla, henry, amp/meter, henry, equency, revolution/second, revolution/m	it/s, yd/s, miles/s; Acceleration: m/ c yards; Force (Weight): newton, grain, andard), torr, psi; Electrical: volts, amps, /meter, coulomb/m2, farad/meter, /meter; Energy: joule, Btu, calorie;				
Horizontal - Analog Chann	els						
Timebases	Internal timebase common to 4 inpu						
Time/Division Range	20 ps/div–128 s/div, depending on r Real-time Mode: 20 ps/div–64 s/div RIS Mode: 20 ps/div–10 ns/div; use Roll Mode: 100 ms/div up to 128 s/d	/	≤5MS/s				
Clock Accuracy	< 1 ppm + (aging of 0.5ppm/yr from						
Sample Clock Jitter	Up to 10 µs Acquired Time Range: 100 fsrms (Internal Timebase Reference)						

	<pre>+ ppin · (aging of o.oppin) yr normaet canbration)</pre>
Sample Clock Jitter	Up to 10 µs Acquired Time Range: 100 fsrms (Internal Timebase Reference)
	Up to 6.4 ms Acquired Time Range: 150 fsrms (Internal Timebase Reference)
Delta Time Measurement Accuracy	$\sqrt{2} * \sqrt{\left(\frac{Noise}{SlewRate}\right)^2 + (Sample Clock Jitter)^2} (RMS) + (clock accuracy * reading) (seconds)$
Jitter Measurement Floor	$\sqrt{\left(\frac{Noise}{SlewRate}\right)^2 + (Sample Clock Jitter)^2} (RMS, seconds, TIE)$
Channel-Channel Deskew Range	±9 x time/div. setting, or 25 ns max., each channel
External Timebase Reference (Input)	10 MHz; 50 Ω impedance, applied at the rear input
External Timebase Deference (Output)	10 MU IZ: EQ Q impodence, output at the rear

External Timebase Reference (Output) 10 MHz; 50 Ω impedance, output at the rear

	WaveMaster 813Zi-B (SDA)	WaveMaster 816Zi-B (SDA)	WaveMaster 820Zi-B (SDA)			
Vertical System						
Maximum Input Voltage	50 Ω (ProLink): ±2 V max. @ ≤ 100 mV/div, 5.5 V _{rms} @ > 100 mV/div 50 Ω (ProBus): ±5 V max., 3.5 V _{rms} 1 MΩ (ProBus): 250 V max. (peak AC: < 10 kHz + DC)					
Input Coupling	ProLink Inputs: 50 Ω: DC, GND ProBus Inputs: 1 ΜΩ: AC, DC, GND; 50 Ω: DC, GND 1					
Input Impedance	ProLink Inputs: $50 \ \Omega \pm 2\%$ for $\leq 100 \ mV/div$, $50 \ \Omega \pm 3\%$ for $> 100 \ mV/div$ ProBus Inputs: $50 \ \Omega \pm 2\%$ or $1 \ M\Omega \parallel 16 \ pF$, $1 \ M\Omega \parallel 11 \ pF$ with supplied probe					
Bandwidth Limiters	20 MHz, 200 MHz, 1 GHz, 4 GHz, 6 GHz, 8 GHz	40 GS/s mode: 20 MHz, 200 MHz, 1 GHz, 4 GHz, 6 GHz, 8 GHz, 13 GHz 80 GS/s Mode: 13 GHz	40 GS/s mode: 20 MHz, 200 MHz, 1 GHz, 4 GHz, 6 GHz, 8 GHz, 13 GHz, 16 GHz 80 GS/s Mode: 13 GHz, 16 GHz			
Rescaling	Length: meters, inches, feet, yards, miles; Mass: grams, slugs; Temperature: celsius, fahrenheit, kelvin; Angle: radian, arcdegr, arcmin, arcsec, cycles, revolutions, turns; Velocity: m/s, in/s, ft/s, yd/s, miles/s; Acceleration: m/ s2, in/s2, ft/s2, g0; Volume: liters, cubic meters, cubic inches, cubic feet, cubic yards; Force (Weight): newton, grain, ounce, pound; Pressure: pascal, bar, atmosphere (technical), atmosphere (standard), torr, psi; Electrical: volts, amps, watts, volt-amperes, volt-amperes reactive, farad, coulomb, ohm, siemen, volt/meter, coulomb/m2, farad/meter, siemen/meter, power factor; Magnetic: weber, tesla, henry, amp/meter, henry/meter; Energy: joule, Btu, calorie; Rotating Machine: radian/second, frequency, revolution/second, revolution/minute, N·m, Ib-ft, Ib-in, oz-in, watt, horsepower; Other: %.					
Horizontal - Analog Channels						
Timebases	Internal timebase common to 4 input	channels				
Time/Division Range	Real-time Mode at 80 GS/s: 20 ps/div=640 µs/div, depending on memory length Other sample rates: 20 ps/div=128 s/div, depending on memory length Real-time Mode: 20 ps/div=64 s/div; RIS Mode: 20 ps/div=10 ns/div; selectable at ≤10 ns/div; Roll Mode: 100 ms/div up to 128 s/div, selectable at ≥ 100 ms/div and ≤ 5 MS/s					
Clock Accuracy	< 1 ppm + (aging of 0.5 ppm/yr from l	last calibration)				
Sample Clock Jitter	Up to 10 µs Acquired Time Range: 10 Up to 6.4 ms Acquired Time Range: 1	0 fsrms (Internal Timebase Reference) 50 fsrms (Internal Timebase Reference))			
Delta Time Measurement Accuracy	$\sqrt{2} * \sqrt{\left(\frac{Noise}{SlewRate}\right)^2} + (Sample Clock Ji$	itter) ² (RMS) + (clock accuracy * reading) (secon	lds)			
Jitter Measurement Floor	$\sqrt{\left\langle SlewRate \right\rangle}$	tter)² (RMS, seconds, TIE)				
Channel-Channel Deskew Range External Timebase Reference (Input) External Timebase Reference (Output)	±9 x time/div. setting, or 25 ns max., e 10 MHz; 50 Ω impedance, applied at t 10 MHz; 50 Ω impedance, output at th	he rear input				

		VaveMaster)4Zi-B (SDA)		WaveMaster 806Zi-B (SDA)	WaveMaster 808Zi-B (SDA)
Acquisition - Analog Channels					
Sample Rate (Single-Shot)	40 GS/s (80 GS/s on 1	2 Ch using option	al WM8Zi-2X800	S External Interleaving Device)
Random Interleaved Sampling (RIS)	200 GS/s for	repetitive signals	(20 ps/div to 10	ns/div)	
Standard Memory		: 32 Mpts, 5,000 s 64 Mpts, 15,000 s			
	(Memory and Device)	l Sample Rate car	n be doubled in 1	or 2 Ch mode with use of WM $\!$	18Zi-2X80GS External Interleaving
Memory Options			Max		
	Option	Mem/Ch	Segments		
	M-64	64 Mpts	15,000		
	L-128	128 Mpts	15,000		
	VL-256	256 Mpts	15,000		
	(Memory and Device)	l Sample Rate car	n be doubled in 1	or 2 Ch mode with use of WM	18Zi-2X80GS External Interleaving
Intersegment time	1 µs				
Averaging			n sweeps; contir	uous averaging to 1 million sw	leeps
Interpolation	Linear or Sin	x/x			
Vertical, Horizontal, Acquisition		nels with HDA	25-18-LBUS		
Maximum Input Frequency	3 GHz				
Minimum Detectable Pulse Width	167ps				
		single ended inpu	it		
Input Dynamic Range	±7.5V max d				
Input Impedance (Flying Leads)		0 kΩ, 0.12pF diffe	erential		
Input Channels	18 Digital Ch				
Manima in the set Malta and	±15V on any ±15V max di	single ended inpu	it		
Maximum Input Voltage		Terential			
Minimum Input Voltage Swing Threshold Selections	<u>150 mV p-p</u> User defined				
Threshold Accuracy User Defined Threshold Range		of threshold sett			
		per channel in 5 r V settable per cha			
User Defined Hysteresis Range Sample Rate	12.5 GS/s	iv settable per cha	linel		
Channel-to-Channel Skew	±160ps	a atana			
Deskew Range	±1.6ns in 80p	s steps			

	WaveMaster 813Zi-B (SDA)		WaveMaste 816Zi-B (SD/		WaveMaster 820Zi-B (SDA)
Acquisition - Analog Channels					
Sample Rate (Single-Shot)	40 GS/s (80 GS/s on 2 Ch using optional WM8Zi-2X80GS External Interleaving Device)	40 GS/s on 4 Ch 80 GS/s on 2 Ch			
Random Interleaved Sampling (RIS)	200 GS/s for repetitive signals (20 ps/	/div to 10 r	ns/div)		
Standard Memory	WaveMaster: 32 Mpts, 5,000 segments max SDA models: 64 Mpts, 15,000 segments max (Memory and Sample Rate can be doubled in 1 or 2 Ch mode with use of WM8Zi-2X80GS External Interleaving Device)	4 channels: 32 Mpts, 5,000 segments max (SDA: 64 Mpts, 15,000 segments max) 2 channels: (SDA: 128 Mpts, 15,000 segments max)		ents max)	
Memory Options				Max	
	Ot	ption	Mem/Ch	Segments	
	M	-64	64 Mpts	15,000	
	L-	128	128 Mpts	15,000	
	VL	256	256 Mpts	15,000	

Intersegment time	1μs
Averaging	Summed averaging to 1 million sweeps; continuous averaging to 1 million sweeps
Interpolation	Linear or Sin x/x

Vertical, Horizontal, Acquisition - Digital Channels with HDA125-18-LBUS

Maximum Input Frequency	3 GHz
Minimum Detectable Pulse Width	167 ps
	±10 V on any single ended input
Input Dynamic Range	±7.5 V max differential
Input Impedance (Flying Leads)	QL-SI tips: 110 kΩ, 0.12 pF differential
Input Channels	18 Digital Channels
	±15 V on any single ended input
Maximum Input Voltage	±15 V max differential
Minimum Input Voltage Swing	150 mV p-p
Threshold Selections	User Defined
Threshold Accuracy	±(25 mV + 3% of threshold setting)
User Defined Threshold Range	±5 V, settable per channel in 5 mV steps
User Defined Hysteresis Range	50 mV - 600 mV settable per channel
Sample Rate	12.5 GS/s
Channel-to-Channel Skew	±160 ps
Deskew Range	±1.6 ns in 80 ps steps

	WaveMaster 804Zi-B (SDA)	WaveMaster 806Zi-B (SDA)	WaveMaster 808Zi-B (SDA)	
Triggering System				
Modes	Normal, Auto, Single and Stop			
Sources		Fast Edge; slope and level unique to ea	ach source (except line trigger)	
Coupling	DC, AC, HFRej, LFRej			
Pre-trigger Delay	0 to 100% of memory size			
Post-trigger Delay		limited at slower time/div settings or i	n roll mode	
Hold-off	From 2 ns up to 20 s or from 1 to 99,9			
Trigger and Interpolator Jitter	<0.1 ps rms (typical, software assisted	d), 2 ps rms (typical, hxc fvdardware)		
Internal Trigger Level Range	$\pm 4.1 \text{ div from center}$			
External Trigger Level Range Maximum Trigger Rate	Ext (±0.4 V); Ext/10 (±4 V) 1,000,000 waveforms/second (in Seq	uence Made up to 1 abappala)		
Trigger Sensitivity with Edge Trigger	Not Applicable	uence Mode, up to 4 channels)		
2.92mm Inputs	Νοι Αρμιζαδίε			
Trigger Sensitivity with Edge Trigger	2 div @ < 3.5 GHz			
(Ch 1–4) ProBus Inputs	1.5 div @ < 1.75 GHz			
	1.0 div @ < 200 MHz			
	(for DC coupling, ≥ 10 mV/div, 50 Ω)			
Trigger Sensitivity with Edge Trigger	2 div @ < 4 GHz,	2 div @ < 6 GHz	2 div @ < 8 GHz	
(Ch 1–4) ProLink Inputs	1.5 div @ < 3 GHz,	1.5 div @ < 3 GHz	1.5 div @ < 3 GHz	
	1.0 div @ < 200 MHz, (for DC, AC,	1.0 div @ < 200 MHz (for DC, AC,	1.0 div @ < 200 MHz (for DC, AC,	
	LFRej coupling,	LFRej coupling,	LFRej coupling,	
	≥ 10 mV/div, 50 Ω)	$\geq 10 \text{ mV/div}, 50 \Omega$	$\geq 10 \text{ mV/div}, 50 \Omega$	
External Trigger Sensitivity,	2 div @ < 1 GHz,			
(Edge Trigger)	1.5 div @ < 500 MHz,			
	1.0 div @ < 200 MHz, (for DC coupling)			
Max. Trigger Frequency,	2.0 GHz @ ≥ 10 mV/div			
SMART Trigger	(minimum triggerable width 200 ps)			
	(
Trigger Types	Triggers when signal mosts along (no	aitive pagative or either) and level can	dition	
Edge Width		sitive, negative, or either) and level con (widths selectable as low as 200ps to 2		
Glitch				
Window		Triggers on positive or negative glitches (widths selectable as low as 200ps to 20 s) or on intermittent faults. Triggers when signal exits a window defined by adjustable thresholds.		
Pattern	Logic combination (AND, NAND, OR, N	OR) of 5 inputs (4 channels and externa	al trigger input). Each source can be	
	high, low or don't care. The high and lo	Logic combination (AND, NAND, OR, NOR) of 5 inputs (4 channels and external trigger input). Each source can be high, low or don't care. The high and low level can be selected independently. Triggers at start or end of the pattern.		
TV-Composite Video	Iriggers NTSC or PAL with selectable	line and field; HDTV (720p, 1080i, 1080 electable fields (1-8), lines (up to 2000),)p) with selectable frame rate (50	
	interlacing (1:1, 2:1, 4:1, 8:1) or synch i	pulse slope (positive or negative).	Traine rates (25, 50, 50, 61 00 Hz),	
Runt	Trigger on positive or negative runts de	efined by two voltage limits and two tim	e limits. Select between 1 ns and 20 ns.	
Slew Rate		dV, dt and slope. Select edge limits be		
Interval	Triggers on intervals selectable betwe			
Dropout	Triggers if signal drops out for longer	<u>than selected time between 1 ns and 2</u>	0 s.	
Exclusion Triggering		fying the expected behavior and trigge		
Measurement Trigger	Select from a large number of measur be used as only trigger or last event in	rement parameters trigger on a measu	rement value with qualified limits. Can	
Multi-stage: Qualified	Triggers on any input source only if a	defined state or edge occurred on anot	her input source. Holdoff between	
Multi-stage: Qualified First	sources is selectable by time or events. In Sequence acquisition mode, triggers repeatably on event B only if a defined pattern, state or edge (event A) is			
Multi-stage. Quaimed Filst	satisfied in the first segment of the ac	quisition. Holdoff between sources is	selectable by time or events.	
High and Low Speed Serial Proto	ocol Triggering (Optional)			
		es, Options, and Accessories Catalog for	the latest offerings on all our	
	instruments	.,	<u> </u>	
Measurement Tools				
Measurement Functionality	Display up to 12 measurement param	eters together with statistics including	mean, minimum, maximum, standard	
Medodrennen er anotionality	deviation, and total number. Each occ	urrence of each parameter is measure	d and added to the statistics table.	
	Histicons provide a fast, dynamic view	v of parameters and waveshape charac	cteristics. Parameter math allows	
	measurement on the source waveform	n. Parameter accept criteria define allc	Parameter gates define the location for wable values based on range setting	
	or waveform state.			
Measurement Parameters -	Cycles (number of), Cycle to Cycle, De	lay (from trigger, 50%), Δ Delay (50%),	Duty Cycle (50%, @level), Edges	
Horizontal + Jitter	(number of, @level), Fall Time (90-10,	@levels), Frequency (50%, @level), Ha	It Period (@level), Hold Time (@level),	
	(10-90 @levels) Setup (@levels) Ske	FOILTS, FEILOU (50%, (MIEVEL), Δ PERIOD ($($ (M)) (MIEVELS) SIEW Bate (M) (M	(wiever), Friase (wiever), Rise Time Interval Error (@level) Time (@level) A	
	Time (@level), Width (50%, @level), Δ	<u>Width (@level)</u> , X(value)@max, X(value	(@level), Hold Time (@level), (@level), Phase (@level), Rise Time Interval Error (@level), Time (@level), Δ)@min	
Measurement Parameters - Vertical	Amplitude, Base, Level@X, Maximum,	Mean, Median, Minimum, Peak-to-Pea	k, RMS, Std. Deviation, Top	
Measurement Parameters - Pulse	Area, Base, Fall Time (90-10, 80-20, @	levels), Overshoot (positive, negative),	Rise Time (10-90, 80-20, @levels), Top,	
	Width (50%)			

 Width (50%)

 Measurement Parameters - Statistical (on Histograms)
 Full Width (@ Half Max, @%), Amplitude, Base, Peak@MaxPopulation, Maximum, Mean, Median, Minimum, Mode, Range, RMS, Std. Deviation, Top, X(value)@Peak, Peaks (number of), Percentile, Population (@bin, total)

	WaveMaster 813Zi-B (SDA)	WaveMaster 816Zi-B (SDA)	WaveMaster 820Zi-B (SDA)
Triggering System			
Modes	Normal, Auto, Single and Stop		
Sources	Any input channel, Ext, Ext/10, Line or Fast	Edge; slope and level unique to ea	ach source (except line trigger)
Coupling	DC, AC, HFRej, LFRej		
Pre-trigger Delay Post-trigger Delay	0 to 100% of memory size No limitation		
Hold-off	From 1 ns up to 20 s or from 1 to 99,999,9	00 aventa	
Trigger and Interpolator Jitter	≤ 2.5 ps RMS (typical), < 0.1 ps RMS (typical)		
Internal Trigger Level Range	± 2.5 ps hive (typical), < 0.1 ps hive (typical) ± 4.1 div from center	ai, software assisted)	
External Trigger Level Range	Ext (±0.4 V); Ext/10 (±4 V)		
Maximum Trigger Rate	1,000,000 waveforms/second (in Sequence	ce Mode up to 4 channels)	
Trigger Sensitivity with Edge Trigger 2.92mm Inputs	Not Applicable		
Trigger Sensitivity with Edge Trigger	2 div @ < 3.5 GHz		
(Ch 1–4) ProBus Inputs	1.5 div @ < 1.75 GHz		
	1.0 div @ < 200 MHz		
	(for DC coupling, $\geq 10 \text{ mV/div}, 50 \Omega$)		
Trigger Sensitivity with Edge Trigger (Ch 1–4) ProLink Inputs	3 div @ < 13 GHz 1.5 div @ < 3 GHz 1.0 div @ < 200 MHz (for DC, AC, LFRej coupling, ≥ 10 mV/div, 50 Ω)	0.75 div	0.75 div
External Trigger Sensitivity,	2 div @ < 1 GHz,		< 3.5 GHz
(Edge Trigger)	1.5 div @ < 500 MHz, 1.0 div @ < 200 MHz,		< 1.75 GHz
	(for DC coupling)		< 200 MHz ≥ 10 mV/div. 50 Ω)
Max. Trigger Frequency, SMART Trigger	2.0 GHz @ ≥ 10 mV/div (minimum triggerable width 200 ps)	(for DC coupling,	≥ 10 mv/div, 50 Ω)
	(minimum triggerable width 200 ps)		
Trigger Types			
Edge	Triggers when signal meets slope (positive		
Width	Triggers on positive, negative or both widt		
Glitch	Triggers on positive or negative glitches (v		s to 20 s) or on intermittent faults.
<u>Window</u> Pattern	Triggers when signal exits a window define	ed by adjustable thresholds.	altriagar input) Each course can be
TV-Composite Video	Logic combination (AND, NAND, OR, NOR) high, low or don't care. The high and low le Triggers NTSC or PAL with selectable line	vel can be selected independently. and field: HDTV (720p 1080i 1080	Triggers at start or end of the pattern.
·	Triggers NTSC or PAL with selectable line Hz) and line; or CUSTOM with selectable fi (1:1, 2:1, 4:1, 8:1) or synch pulse slope (pos	sitive or negative).	
Runt	Trigger on positive or negative runts define	, , , , , , , , , , , , , , , , , , , ,	
Slew Rate	Trigger on edge rates. Select limits for dV,		etween 1 ns and 20 ns.
Interval	Triggers on intervals selectable between 1		
Dropout	Triggers if signal drops out for longer than		
Exclusion Triggering	Trigger on intermittent faults by specifying		
Measurement Trigger Multi-stage: Qualified	Select from a large number of measureme be used as only trigger or last event in a Ca Triggers on any input source only if a defir	ascade Trigger.	·
Multi-stage: Qualified First	sources is selectable by time or events. In Sequence acquisition mode, triggers rep	_	
-	satisfied in the first segment of the acquis		
High- and Low-speed Serial Prot			
	Please refer to the <i>Oscilloscope Features, O</i> instruments.	ptions and Accessories Catalog for	the latest offerings on all our
Measurement Tools			
Measurement Functionality	Display up to 12 measurement parameters deviation and total number. Each occurren Histicons provide a fast, dynamic view of j addition, subtraction, multiplication or divi measurement on the source waveform. Pa or waveform state.	nce of each parameter is measured parameters and waveshape chara sion of two different parameters. F arameter accept criteria define allo	d and added to the statistics table. cteristics. Parameter math allows Parameter gates define the location for owable values based on range setting
Measurement Parameters - Horizontal + Jitter	Cycles (number of), Cycle to Cycle, Delay ((number of, @level), Fall Time (90-10, @lev N Cycle Jitter (peak-peak), Number of Poir (10-90, @levels), Setup (@levels), Skew (@ Time (@level), Width (50%, @level), A Width	ilevels), Slew Rate (@levels), Time <u>h (@level), X(value)@max, X(value</u>	Interval Error (@level), Time (@level), Δ e)@min
Measurement Parameters - Vertical	Amplitude, Base, Level@X, Maximum, Mea	, , , ,	, , , , , , , , , , , , , , , , , , , ,
Measurement Parameters - Pulse	Area, Base, Fall Time (90-10, 80-20, @leve Width (50%)	,, , ,	
Measurement Parameters - Statistical (on Histograms)	Full Width (@ Half Max, @%), Amplitude, B Range, RMS, Std. Deviation, Top, X(value)@	азе, РеакшилахРоријаціоп, Maxin DPeak, Peaks (number of), Percen	tile, Population (@bin, total)

	WaveMaster 804Zi-B (SDA)	WaveMaster 806Zi-B (SDA)	WaveMaster 808Zi-B (SDA)
Math Tools			
Math Functionality	Display up to 12 math functions traces operations on each function trace, and	(F1-F12). The easy-to-use graphical ir function traces can be chained togeth	nterface simplifies setup of up to two her to perform math-on-math.
Math Operators - Basic Math	Average (summed), Average (continuou Reciprocal, Rescale (with units), Roof, S	Sum (+)	
Math Operators - Digital (incl. with MSO models/options)	Digital AND, Digital DFlipFlop, Digital NA	ND, Digital NOR, Digital NOT, Digital Ol	R, Digital XOR
Math Operators - Filters	Enhanced resolution (to 15 bits vertical		
Math Operators - Frequency Analysis	FFT (power spectrum, magnitude, phas memory length. Select from Rectangul	ar, VonHann, Hamming, FlatTop and Bl	lackman Harris windows.
Math Operators - Functions	Absolute value, Correlation (two wavefor Invert (negate), Log (base e), Log (base	rms), Derivative, Deskew (resample), E 10), Reciprocal, Rescale (with units), S	Exp (base e), Exp (base 10), Integral, Square, Square root, Zoom (identity)
Math Operators - Other	Segment, Sparse		
Measurement and Math Integrati			
	Histograms to display statistical distrib to 1 million measurement parameters. parameter. Persistence histogram and	Track (display parameter vs. time, tim	e-correlated to acquisitions) any
Pass/Fail Testing			
	Display up to 12 Pass/Fail queries usin <, \leq , =, >, \geq , within limit $\pm \Delta$ value or %) of In, or Any Out conditions). Combine que True", "Any False", or groups of "All" or "A Hardcopy (send email, save screen images).	Mask Test (pre-defined or user-define eries into a boolean expression to Pass Any", with following THEN Save (wavefi	ed mask, waveform All In, All Out, Any s or Fail IF "All True", "All False", "Any orms), Stop, Alarm, (send) Pulse,
Display System			
Size	Color 15.3" flat panel TFT-Active Matrix	LCD with high-resolution touch screer	1
Resolution Number of Traces	WXGA; 1280 x 768 pixels Display a maximum of 16 traces (up to	40 with some software options). Simu	ultaneously display channel, zoom,
Crief Others	memory and math traces.		
Grid Styles Waveform Representation	Auto, Single, Dual, Quad, Octal, X-Y, Sing Sample dots joined, or sample dots onl		
Processor/CPU	oumple dots joined, or sumple dots off	y	
Туре	Intel® Core™ i7-4770S Quad, 3.1 GHz (u		
Processor Memory	16 GB standard for STD memory (32 M 32 GB standard for L-128 and VL-256 n		
<u>Operating System</u> Real-Time Clock	Microsoft Windows® 10 Date and time displayed with waveform	in hardcopy files. SNTP support to synd	chronize to precision internal clocks.
Connectivity			
Ethernet Port	Supports 10/100/1000BaseT Ethernet		
USB Host Ports	4 rear USB 3.0 ports, 3 front panel USB	2.0 ports support Windows-compatibl	le devices
<u>GPIB Port (Optional)</u> External Monitor Port	Supports IEEE—488.2 Full-size DisplayPort connector, include		tion with second monitor
Remote Control	Via Microsoft COM Automation or via L		
Network Communication Standard	VXI-11 or VICP, LXI Class C (v1.2) comp		
Power Requirements			
Voltage	100–240 VAC ±10% at 45-66 Hz; 100-1 Category II	20 VAC ±10% at 380-420 Hz; automat	ic AC voltage selection, Installation
Max Power Consumption	975 W / 975 VA		
Environmental			
Temperature (Operating)	+5 °C to +40 °C		
Temperature (Non-Operating)	-20 °C to +60 °C		
Humidity (Operating) Humidity (Non-Operating)	5% to 90% RH (non-condensing) up to 5% to 95% RH (non-condensing) as tes		i (non-condensing) at +40 °C
Altitude (Operating)	Up to 10,000 ft (3048 m) at or below +3		
Altitude (Non-Operating)	Up to 40,000 ft (12,192 m)		
Random Vibration (Operating)	0.5 grms 5 Hz to 500 Hz, 15 minutes in	each of three orthogonal axes	
Random Vibration (Non-Operating)	2.4 grms 5 Hz to 500 Hz, 15 minutes in	each of three orthogonal axes	
Functional Shock	20 g peak, half sine, 11 ms pulse, 3 shocks	(positive and negative) in each of three or	rthogonal axes, 18 shocks total
Size and Weight			
<u>Dimensions (HWD)</u> Weight	<u>14" H x 18.4" W x 16" D (355 x 467 x 40</u> 51.5 lbs. (23.4 kg)	<u>o mm)</u>	
Certifications			
CE Certification UL and cUL Listing	CE compliant, UL and cUL listed; confo CSA C22.2 No. 61010-1-12	rms to EN 61326, EN 61010-1, EN6101	10-2-030, UL 61010-1 3rd edition and
Warranty and Service			
Tranting and GETTICE	3-year warranty; calibration recommen	ded annually. Optional service program	ns include extended warranty,
	upgrades and calibration services.		<i>,</i>

	WaveMaster 813Zi-B (SDA)	WaveMaster 816Zi-B (SDA)	WaveMaster 820Zi-B (SDA)
Moth Toolo	OTSZI-D (SDA)	OTOLI-D (SDA)	OZUZI-B (SDA)
Math Tools Math Functionality	Display up to 12 math functions traces	(E1-E12) The easy-to-use graphical in	terface simplifies setup of up to two
Math Operators - Basic Math	operations on each function trace, and Average (summed), Average (continuou	function traces can be chained togethe is), Difference (–), Envelope, Floor, Invel	er to perform math-on-math.
Math Operators - Digital	Reciprocal, Rescale (with units), Roof, S Digital AND, Digital DFlipFlop, Digital NA		R, Digital XOR
(incl. with MSO models/options)			
Math Operators - Filters	Enhanced resolution (to 15 bits vertical		
Math Operators - Frequency Analysis	FFT (power spectrum, magnitude, phas memory length. Select from Rectangula	ar, VonHann, Hamming, FlatTop and Bla	ackman Harris windows.
Math Operators - Functions	Absolute value, Correlation (two wavefor Invert (negate), Log (base e), Log (base	orms), Derivative, Deskew (resample), E: 10), Reciprocal, Rescale (with units), So	xp (base e), Exp (base 10), Integral, quare, Square root, Zoom (identity)
Math Operators - Other	Segment, Sparse		
Measurement and Math Integrat			
	Histograms to display statistical distrib to 1 million measurement parameters. parameter. Persistence histogram and	Track (display parameter vs. time, time	e-correlated to acquisitions) any
Pass/Fail Testing			
	Display up to 12 Pass/Fail queries usin <, ≤, =, >, ≥, within limit ±∆ value or %) or In, or Any Out conditions). Combine qu True", "Any False", or groups of "All" or "A Hardcopy (send email, save screen ima	Mask Test (pre-defined or user-defined eries into a boolean expression to Pass Any", with following THEN Save (wavefo	d mask, waveform All In, All Out, Any or Fail IF "All True", "All False", "Any orms), Stop, Alarm, (send) Pulse,
Display System			
<u>Size</u> Resolution	Color 15.3" flat panel TFT-Active Matrix WXGA: 1280 x 768 pixels	LCD with high-resolution touch screen	
Number of Traces	Display a maximum of 16 traces (up to memory and math traces.	40 with some software options). Simul	taneously display channel, zoom,
Grid Styles	Auto, Single, Dual, Quad, Octal, X-Y, Sinc	Ile+X-Y, Dual+X-Y	
Waveform Representation	Sample dots joined, or sample dots onl		
Processor/CPU			
Туре	Intel® Core™ i7-4770S Quad, 3.1 GHz (u	p to 3.9 GHz in Turbo mode), or better	
Processor Memory	16 GB standard for STD memory (32 M 32 GB standard for L-128 and VL-256 m		
<u>Operating System</u> Real-Time Clock	Microsoft Windows® 10		
	Date and time displayed with waveform	In hardcopy files. SNTP support to sync	nronize to precision internal clocks.
Connectivity	0	interference (D 145 ment)	
Ethernet Port USB Host Ports	Supports 10/100/1000BaseT Ethernet 4 rear USB 3.0 ports, 3 front panel USB		dovices
GPIB Port (Optional)	Supports IEEE-488.2		
External Monitor Port	Full-size DisplayPort connector, include	s support for extended desktop operati	ion with second monitor
Remote Control	Via Microsoft COM Automation, or via L		
Network Communication Standard	VXI-11 or VICP, LXI Class C (v1.2) comp	liant	
Power Requirements			
Voltage	100–240 VAC ±10% at 45-66 Hz; 100-1 Category II	20 VAC ±10% at 380-420 Hz; automatic	c AC voltage selection, Installation
Max Power Consumption	975 W / 975 VA		
Environmental			
Temperature (Operating)	+5 °C to +40 °C		
Temperature (Non-Operating)	-20 °C to +60 °C		
Humidity (Operating) Humidity (Non-Operating)	5% to 90% RH (non-condensing) up to - 5% to 95% RH (non-condensing) as tes		non-condensing) at +40 °C
Altitude (Operating)	Up to 10,000 ft (3048 m) at or below +3		
Altitude (Non-Operating)	Up to 40,000 ft (12,192 m)		
Random Vibration (Operating)	0.5 grms 5 Hz to 500 Hz, 15 minutes in	each of three orthogonal axes	
Random Vibration (Non-Operating)	2.4 grms 5 Hz to 500 Hz, 15 minutes in		
Functional Shock	20 g peak, half sine, 11 ms pulse, 3 shocks	(positive and negative) in each of three ort	hogonal axes, 18 shocks total
Size and Weight			
Dimensions (HWD)	<u>14" H x 18.4" W x 16" D (355 x 467 x 40)</u>	o mm)	
Weight	51.5 lbs. (23.4 kg)		
Certifications CE Certification UL and cUL Listing	CE compliant, UL and cUL listed; confo CSA C22.2 No. 61010-1-12	rms to EN 61326, EN 61010-1, EN6101	0-2-030, UL 61010-1 3rd edition and
Warranty and Service			
	3-year warranty; calibration recommen- upgrades and calibration services.	ded annually. Optional service program	s include extended warranty,

ORDERING INFORMATION

Product Description	Product Code
WaveMaster 8 Zi-B Series Oscilloscopes	
4 GHz, 40 GS/s, 4ch, 32 Mpts/Ch WaveMaster with 15.3" WXGA Color Display. 50 Ω and 1 M Ω Inputs	WaveMaster 804Zi-B
6 GHz, 40 GS/s, 4ch, 32 Mpts/Ch WaveMaster with 15.3" WXGA Color Display. 50 Ω and 1 M Ω Inputs	WaveMaster 806Zi-B
8 GHz, 40 GS/s, 4ch, 32 Mpts/Ch WaveMaster with 15.3" WXGA Color Display. 50 Ω and 1 M Ω Inputs	WaveMaster 808Zi-B
13 GHz, 40 GS/s, 4ch, 32 Mpts/Ch WaveMaster with 15.3" WXGA Color Display. 50 Ω and 1 M Ω Inputs	WaveMaster 813Zi-B
16 GHz, 80 GS/s, 64 Mpts/Ch WaveMaster with 15.3" WXGA Color Display. 50 Ω and 1 M Ω Inputs. Also operates in 4ch, 40 GS/s, 32 Mpts/Ch mode.	WaveMaster 816Zi-B
20 GHz, 80 GS/s, 64 Mpts/Ch WaveMaster with 15.3" WXGA Color Display. 50 Ω and 1 M Ω Inputs. Also operates in 4ch, 40 GS/s, 32 Mpts/Ch mode.	WaveMaster 820Zi-B
SDA 8 Zi-B Series Serial Data Analyzers	
4 GHz, 40 GS/s, 4ch, 64 Mpts/Ch Serial Data Analyzer with 15.3" WXGA Color Display. 50 Ω and 1 M Ω Inputs, 8b/10b and 64b/66b decode.	SDA 804Zi-B
6 GHz, 40 GS/s, 4ch, 64 Mpts/Ch Serial Data Analyzer with 15.3" WXGA Color Display. 50 Ω and 1 MΩ Inputs, 8b/10b and 64b/66b decode.	SDA 806Zi-B
8 GHz, 40 GS/s, 4ch, 64 Mpts/Ch Serial Data Analyzer with 15.3" WXGA Color Display. 50 Ω and 1 M Ω Inputs, 8b/10b and 64b/66b decode.	SDA 808Zi-B
13 GHz, 40 GS/s, 4ch, 64 Mpts/Ch Serial Data Analyzer with 15.3" WXGA Color Display. 50 Ω and 1 M Ω Inputs, 8b/10b and 64b/66b decode.	SDA 813Zi-B
16 GHz, 80 GS/s, 128 Mpts/Ch Serial Data Analyzer with 15.3" WXGA Color Display. 50 Ω and 1 M Ω Inputs, 8b/10b and 64b/66b decode. Also operates in 4ch, 40 GS/s, 64 Mpts/Ch mode.	SDA 816Zi-B
20 GHz, 80 GS/s, 128 Mpts/Ch Serial Data Analyzer with 15.3" WXGA Color Display. 50 Ω and 1 M Ω Inputs, 8b/10b and 64b/66b decode. Also operates in 4ch, 40 GS/s, 64 Mpts/Ch mode.	SDA 820Zi-B
Included with Standard Configuration	
÷10, 500 MHz Passive Probe (Qty. 4 on 4 – 20 GHz units, Qty. 2 on 25 – 45 GHz units)	

\div 10, 500 MHz Passive Probe (Qty. 4 on 4 – 20 GHz units, Qty. 2 on 25 – 45 GHz units)	
ProLink to SMA Adapter: 4 each (for 4 – 8 GHz units)	LPA-SMA-A
ProLink to K/2.92 mm Adapter: 4 each (for 13 – 45 GHz units)	LPA-K-A
Optical 3-button Wheel Mouse, USB 2.0	
Protective Front Cover	
Printed Getting Started Guide	
Anti-virus Software (Trial Version)	
Microsoft Windows® 10 License	
Commercial NIST Traceable Calibration with Certificate	
Power Cable for the Destination Country	
3-year Warranty	

Memory and Sample Rate Options

80 GS/s on 2 Ch Sampling Rate Option for WaveMaster 8 Zi-B (not available for 816Zi-B, 820Zi-B, 825Zi-B or 830Zi-B), includes two separate external interleaving devices with storage case	WM8Zi-2X80GS
64 Mpts/Ch Memory Option for WaveMaster 8 Zi-B, includes 16 GB of RAM	WM8Zi-M-64
128 Mpts/Ch Memory Option for WaveMaster 8 Zi-B, includes 32 GB of RAM	WM8Zi-L-128
128 Mpts/Ch Memory Option for SDA 8 Zi-B, includes 32 GB of RAM	SDA8Zi-L-128
256 Mpts/Ch Memory Option for WaveMaster 8 Zi-B, includes 32 GB of RAM	WM8Zi-VL-256
256 Mpts/Ch Memory Option for SDA 8 Zi-B, includes 32 GB of RAM	SDA8Zi-VL-256

CPU, Computer and Other Hardware Options

16 GB to 32 GB CPU RAM Option	WM8ZI-16-UPG-32GBRAM
(Included with -L and -VL Memory options)	
Additional Removable Solid State Drive	WM8ZI-RSSD-02

ode Product Description

Cross-layer Analysis Software

CrossSync PHY Protocol Analyzer Synchronization Software Option for for PCIe	WM8ZI-CROSSSYNC-PHY-PCIE
CrossSync PHY Protocol Analyzer synchronization Software Option for USB and Thunderbolt	WM8ZI-CROSSSYNC-PHY-USB

Product Code

Serial Data and CrossTalk Analysis

Single-lane SDA framework, including	WM8Zi-SDAIII
Eye and Jitter measurements	
Multi-lane SDA LinQ framework, incl.	WM8Zi-SDAIII-CompleteLinQ
Eye, Jitter, Noise, Crosstalk measure-	SDA8Zi-CompleteLinQ
ments, Eye Doctor II and VirtualProbe	
PAMx Serial Data Analysis, Eye, Jitter and Noise	WM8Zi-SDAIII-PAMx
Measurements	
PAM4 Signal Analysis	WM8ZI-PAM4
Signal Integrity Toolkits	
Signal Integrity Toolkits Advanced De-embedding, Emulation and	WM8Zi-VIRTUALPROBE
	WM8Zi-VIRTUALPROBE
Advanced De-embedding, Emulation and	WM8Zi-VIRTUALPROBE
Advanced De-embedding, Emulation and Virtual Probing Toolkit	
Advanced De-embedding, Emulation and Virtual Probing Toolkit Signal Integrity Toolkit - Channel & Fixture	
Advanced De-embedding, Emulation and Virtual Probing Toolkit Signal Integrity Toolkit - Channel & Fixture De-embedding/Emulation, Tx/Rx Equalization	WM8Zi-EYEDRII

Modulated Signal Analysis

WM8Zi-VECTORLINQ
WM8Zi-VECTORLINQ-ADV
WM8ZI-OPTICAL-LINQ

High-speed Digital Analyzer Systems

12.5 GS/s High-speed Digital Analyzer with 18 Ch	HDA125-18-LBUS
QuickLink leadset and LBUS connection	
12.5 GS/s High-speed Digital Analyzer with 9 Ch	HDA125-09-LBUS
QuickLink leadset and LBUS connection	

Ethernet and DDR Debug Tookits

100Base-T1 and 1000Base-T1 Debug Toolkit	WM8ZI-AUTO-ENET-TOOLKIT
DDR2 and LPDDR2 Debug Toolkit	WM8ZI-DDR2-TOOLKIT
DDR 2/3 and LPDDR 2/3 Debug Toolkit	WM8ZI-DDR3-TOOLKIT
DDR 2/3/4 and LPDDR 2/3/4/4X Debug Toolkit	WM8ZI-DDR4-TOOLKIT
DDR 2/3/4/5 and LPDDR 2/3/4/4X Debug Toolkit	WM8ZI-DDR5-TOOLKIT

Serial Data Compliance Test Software

ochar bata oomphanoe reot oorthare	
QualiPHY Enabled 1000Base-T1 (Automotive Ethernet) Software Option	QPHY-1000BASE-T1
QualiPHY Enabled 100Base-T1 (Automotive Ethernet) Software Option	QPHY-100BASE-T1
QualiPHY Enabled 10Base-T1L (Industrial Ethernet) Compliance Software Option	QPHY-10Base-T1L
QualiPHY Enabled 10Base-T1S (Automotive Ethernet) Software Option	QPHY-10BASE-T1S
QualiPHY Enabled 10GBase-KR Software Option	QPHY-10GBASE-KR
QualiPHY Enabled 10GBase-T Software Option	QPHY-10GBASE-T
QualiPHY Enabled DDR2 Software Option	QPHY-DDR2
QualiPHY Enabled LPDDR2 Software Option	QPHY-LPDDR2
QualiPHY Enabled DDR3, DDR3L and LPDDR3 Software C	ption QPHY-DDR3
QualiPHY Enabled DDR4 and LPDDR4/4X Software Option	n QPHY-DDR4
QualiPHY Enabled DisplayPort 1.4 Source Software Option	QPHY-DP14-SOURCE
QualiPHY Enabled Embedded DisplayPort Software Optio	n QPHY-eDP
QualiPHY Enabled Ethernet 10/100/1000BT Software Op	otion QPHY-ENET*
QualiPHY Enabled HDMI 2.0/1.4b TMDS Software Option	QPHY-HDMI2
QualiPHY Enabled HDMI 2.1 FRL and TMDS Software Opt	tion QPHY-HDMI21
QualiPHY Enabled LPDDR2 Software Option	QPHY-LPDDR2

ORDERING INFORMATION

Product Description

Serial Data Compliance Test Software (cont'd)

Ochar Data Oomphanee rest oonware (contra	u)
QualiPHY Enabled MIPI C-PHY Software Option	QPHY-MIPI-CPHY
QualiPHY Enabled MIPI D-PHY Software Option	QPHY-MIPI-DPHY
QualiPHY Enabled MIPI M-PHY Software Option	QPHY-MIPI-MPHY
QualiPHY Enabled MOST50 ePHY Software Option	QPHY-MOST50
QualiPHY Enabled MOST150 oPHY Software Option	QPHY-MOST150
QualiPHY Enabled MultiGBase-T1 (Automotive Ethernet Compliance Software Option) QPHY-MultiGBase-T1
QualiPHY Enabled PCIe 1.0/2.0 Software Option	QPHY-PCIE
QualiPHY Enabled PCIe 3.0 Tx/Rx Software Option	QPHY-PCIE3-TX-RX
QualiPHY Enabled SATA Software Option	QPHY-SATA-TSG-RSG
QualiPHY Enabled SAS-2 Software Option	QPHY-SAS2
QualiPHY Enabled SAS-3 Software Option	QPHY-SAS3
QualiPHY Enabled SFI Software Option	QPHY-SFI
QualiPHY Enabled USB 2.0 Software Option	QPHY-USB‡
QualiPHY Enabled USB 3.2 Tx-Rx Software Option	QPHY-USB3.2-TX-RX
*TF-ENET-B required. [†] TF-HDMI-3.3V-QUADPAK required	
PCI Express, SuperSpeed USB (USB 3.0) and SATA Complete	e Hardware/Software Test

Solutions are available. Consult Factory.

Serial Data Test Fixtures

Test Fixture for 10GBase-T	TF-10GBASE-T
USB4 Sideband Test Coupon Fixture	TF-USB-C-SB
USB4 High-speed and Sideband Test Coupon Fixture	TF-USB-C-HS
Automotive Ethernet Breakout Test Fixture for 100Base-T1 and 1000Base-T1 Debug	TF-AUTO-ENET
4 Pack of SMA Connector Boards for TF-AUTO-ENET	TF-AUTO-ENET-SMA
10/100/1000Base-T Ethernet Test Fixture	TF-ENET-B*
HDMI Pull-Up Terminator Quad Pack	TF-HDMI-3.3V-QUADPAK
SATA 1.5 Gb/s, 3.0 Gb/s and 6.0 Gb/s Compliance Test Fixture Measure Kit	TF-SATA-C-KIT
USB 2.0 Compliance Test Fixture	TF-USB-B
USB 3.0 and 3.1 Compliance Test Fixture	TF-USB3
Electrical Telecom Pulse Mask Test Package	WM8Zi-ET-PMT
MIPI M-PHY input offset adapter dual pack	TF-MIPI-MPHY-DUALPAK
External USB 2.0 to GPIB IEEE 488.2 adapter	USB2-GPIB
*Includes EVET 2008 SMA018 and EVET 2000 BNICSN	1.0

*Includes ENET-2CAB-SMA018 and ENET-2ADA-BNCSMA

Serial Data Triggers and Decoders

ochar bata miggers and becoders	·
100Base-T1 Trigger and Decode Option	WM8Zi-100Base-T1bus TD
100Base-T1 Trigger, Decode, Measure/Gr and Eye Diagram Option	raph, WM8Zi-100Base-T1bus TDME
10Base-T1S Trigger, Decode, Measure/Gr Eye Diagram Option	raph, and WM8Zi-10BASE-T1S TDME
10Base-T1S Trigger and Decode Option	WM8Zi-10BASE-T1S TD
MIL-STD-1553 Trigger and Decode Option	n WM8Zi-1553 TD
MIL-STD-1553 Trigger, Decode, Measure/ Eye Diagram Option	Graph, and WM8ZI-1553 TDME
64b/66b Decode Option	WM8Zi-64b66b D
80-bit NRZ, 8b/10b and 64b/66b 14.1 Gbps Serial Trigger Option, includes 8b/10b and 64b/66b Decode Options	WM8Zi-14GBIT-80B-SYMBOL-TD
80-bit NRZ, 8b/10b, and 64b/66b 6.5 Gbps Serial Trigger Option, includes 8b/10b and 64b/66b Decode Options (Standard on SDA 8 Zi-B)	WM8Zi-6GBIT-80B-SYMBOL-TD
8b10b Decode Option	WM8Zi-8B10B D
ARINC 429 Bus Symbolic Decode, Measure/Graph, Eye Diagram Option	WM8Zi-ARINC429BUS DME SYMBOLIC
ARINC 429 Bus Symbolic Decode Option	WM8Zi-ARINC429bus DSymbolic
Trigger and Decode Option for I2S, LJ, RJ, and TDM	WM8Zi-AUDIOBUS TD
Trigger, Decode and Graph Option for I2S, LJ, RJ, and TDM	WM8Zi-AUDIOBUS TDG
CAN FD Trigger and Decode Option	WM8Zi-CAN FDbus TD
CAN FD Trigger, Decode, Measure/Graph and Eye Diagram Option	WM8ZI-CAN FDBUS TDME
CAN FD Symbolic Trigger, Decode, Measure/Graph, Eye Diagram Option	WM8ZI-CAN FDBUS TDME SYMBOLIC
CAN Trigger and Decode Option	WM8Zi-CANbus TD
CAN Symbolic Trigger, Decode,	WM8ZI-CANBUS TDME SYMBOLIC

Measure/Graph and Eye Diagram Option

Product Description Product Code

Serial Data Triggers and Decoders (cont'd)

Serial Data Triggers and Decoders (cont'd)	
C-PHY (DSI-2/CSI-2) Decode Option	WM8Zi-CPHYBUS D
C-PHY (DSI-2/CSI-2) Decode, Measure/	WM8Zi-CPHYBUS DMP
Graph and Physical Layer Test Option	
DigRF 3G Decode Option	WM8Zi-DigRF3Gbus D
DigRF v4 Decode Option	WM8Zi-DigRFV4bus D
DisplayPort AUX Decode Option	WM8ZI-DPAUX D
DisplayPort AUX Decode, Measure/Graph,	WM8ZI-DPAUX DMP
and Physical Layer Test Option	
MIPI D-PHY Decode Option	WM8Zi-DPHYbus D
MIPI D-PHY Decode and Physical Layer Test Option	WM8Zi-DPHYbus DP
I ² C, SPI, UART-RS232 Trigger and Decode Bundle	WM8ZI-EMB TD
I ² C, SPI, UART-RS232 Trigger, Decode, Measure/Graph and Eye Diagram Bundle	WM8ZI-EMB TDME
	WM8Zi-ENET10Gbus D
Ethernet 10G Decode Option	WM8Zi-ENETbus D
ENET Decode Option Fibre Channel Decode Option	WM8Zi-FCbus D
	WM8Zi-FlexRayBus TD
FlexRay Trigger and Decode Option FlexRay Trigger, Decode, Measure/Graph V	VM8ZI-FLEXRAYBUS TDMF
and Physical Layer Option	
I ² C Bus Trigger and Decode Option	WM8ZI-I2Cbus TD
I ² C Trigger, Decode, Measure/Graph, and	WM8Zi-12CBUS TDME
Eye Diagram Option	
I3C Decode Option	WM8ZI-I3CBUS D
I3C Decode, Measure/Graph and Eye Diagram Option	WM8ZI-I3CBUS DME
LIN Trigger and Decode Option	WM8Zi-LINbus TD
LIN Trigger, Decode, Measure/Graph and Eye Diagram Option	WM8ZI-LINBUS TDME
Manchester Decode Option	WM8Zi-Manchesterbus [
MDIO Decode	WM8Zi-MDIObus [
MIPI M-PHY Decode Option	WM8Zi-MPHYbus D
MIPI M-PHY Decode and Physical Layer Test Option	WM8Zi-MPHYbus DF
MS-500-36 with I2C, SPI, UART-RS-232 Trigger, Decode, Measure/Graph and Eye Diagram Bundle	WM8ZI-MSO-EMB TDME
PCI Express Decode Option	WM8Zi-PCIEbus D
Decoder-Protocol Analyzer Synchronization Software Option	WM8Zi-ProtoSync
Decoder-Protocol Analyzer Synchronization	WM8Zi-ProtoSync-B7
with Bit Tracer Software Option	
SAS Decode Annotation Option	WM8Zi-SASbus D
SATA Decode Annotation Option	WM8Zi-SATAbus D
SENT Decode Option	WM8Zi-SENTbus D
SpaceWire Decode Option	WM8Zi-SpaceWirebus D
SPI Trigger and Decode Optiont	WM8Zi-SPIbus TE
SPI Trigger, Decode, Measure/Graph, and Eye Diagram Option	WM8ZI-SPIBUS TDME
SPMI Decode Option	WM8Zi-SPMIbus D
UART and RS-232 Trigger and Decode Option	WM8Zi-UART-RS232bus TD
	18ZI-UART-RS232BUS TDME
MIPI UniPro Protocol Decoder	WM8ZI-UNIPRObus [
USB-PD Trigger and Decode Option	WM8ZI-USBPD TE
USB-PD Trigger, Decode, Measure/Graph and	WM8ZI-USBPD TDMF
Physical Layer Test Option	MM 407: LIODO LIOIOI
USB2-HSIC Decode Option	WM8Zi-USB2-HSICbus D
USB4-SB Trigger and Decode Option USB4 Decode, Measure/Graph, and Eye Measurement	WM8ZI-USB4SB TE nts WM8ZI-USB4BUS DME
Option USB4-SB Trigger, Decode, Measure/Graph, and	WM8ZI-USB4SB TDMF
PHY Meas. Option	
USB 2.0 Decode Option	WM8Zi-USB2bus D
USB 2.0 Decode, Measure/Graph and	WM8ZI-USB2BUS DME
Eye Diagram Option	MA 1071 LIODOOD' ::
USB 3.2 Decode Option	WM8ZI-USB32BUS D

Mixed Signal Testing Options 250 MHz, 1 GS/s, 36 Ch, 25 Mpts/Ch (500 MHz, 18 Ch, 2 GS/s, 50 Mpts/Ch Interleaved) Mixed Signal Oscilloscope Option

Product Code

MS-500-36

ORDERING INFORMATION

Product Description

General Purpose and Application Specific Software Options

ocherar r ar pooe ana ripphoation opeointe t	boltmare optionio
Spectrum Analyzer for WaveMaster 8 Zi (1 trace)	WM8ZI-SPECTRUM-1
Spectrum Analyzer for WaveMaster/SDA 8 Zi	WM8ZI-SPECTRUM-PRO-2
(2 traces + reference trace)	
MAUI Studio Pro Software	MAUI STUDIO PRO
Coherent Optical Analysis Software	WM8ZI-OPTICAL-LINQ
Digital Filter Software Package	WM8Zi-DFP2
Serial Data Mask Software Package	WM8Zi-SDM
Disk Drive Measurements Software Package	WM8Zi-DDM2
Disk Drive Analyzer Software Package	WM8Zi-DDA
Advanced Optical Recording Measurement Package	WM8ZI-AORM
Electrical Telecom Mask Test Software Package	WM8Zi-ET-PMT
EMC Pulse Parameter Software Package	WM8Zi-EMC
Power Analysis Option	WM8Zi-PWR
Clock Jitter Analysis with Four Views Software Packad	ge WM8Zi-JITKIT
	-

General Accessories

Soft Carrying Case	WM8Zi-SOFTCASE
Rackmount Accessory for WM8Zi	WM8Zi-RACKMOUNT
ProLink to SMA Adapter	LPA-SMA-A
ProLink to 2.92mm Adapter with Probe Power and Communication Pass Through	LPA-2.92
ProLink to K/2.92 mm Adapter	LPA-K-A

Probes and Probe Accessories

Probes and Probe Accessories	
High Voltage Fiber Optic Probe, 150 MHz Bandwidth	HVF0108
Power/Voltage Rail Probe. 2 GHz bandwidth, 1.2x	RP2060
attenuation, +/-60V offset, +/-800mV	
Power/Voltage Rail Probe. 4 GHz bandwidth, 1.2x	RP4060
attenuation, +/-60V offset, +/-800mV	
500 MHz 60 V Common Mode Differential Probe	DL05-HCM
1 GHz 60 V Common Mode Differential Probe	DL10-HCM
1.0 GHz, 0.9 pF, 1 MΩ High Impedance Active Probe	ZS1000
1.5 GHz, 0.9 pF, 1 M Ω High Impedance Active Probe	ZS1500
2.5 GHz, 0.9 pF, 1 MΩ High Impedance Active Probe	ZS2500
4.0 GHz, 0.6 pF, 1 MΩ High Impedance Active Probe	ZS4000
400 MHz, 1kV Vrms High-Voltage Passive Probe	HVP120
6kV High Voltage Passive Probe, 500 MHz	PPE6KV-A
25 MHz High Voltage Differential Probe	HVD3102A
	IVD3102A-NOACC
(without tip accessories)	
120 MHz High Voltage Differential Probe	HVD3106A
	IVD3106A-NOACC
(without tip accessories)	
80 MHz, High Voltage Differential Probe with 6 m Cable	HVD3106A-6M
2 kV, 120 MHz High Voltage Differential Probe	HVD3206A
2 kV, 80 MHz High Voltage Differential Probe with 6 m Cable	HVD3206A-6M
2 kV, 400 MHz High Voltage Differential Probe	HVD3220
6 kV, 100 MHz High Voltage Differential Probe	HVD3605A
700 V, 25 MHz High-Voltage Differential Probe	AP031
500 MHz Differential Probe	AP033
500 MHz, 1.0 pF Active Differential Probe, ±8 V	ZD500
1 GHz, 1.0 pF Active Differential Probe, ±8 V	ZD1000
1.5 GHz, 1.0 pF Active Differential Probe, ±8 V	ZD1500
4 GHz ProBus2 Differential Probe w/ Dx10-SI, Dx10-QC, Dx10-S	
4 GHz ProBus2 Differential Probe w/ Dx20-SI, Dx20-QC, Dx20-S	
6 GHz ProBus2 Differential Probe w/ Dx10-SI, Dx10-QC, Dx10-S	
6 GHz ProBus2 Differential Probe w/ Dx20-SI, Dx20-QC, Dx20-S	
4 GHz ProBus2 Differential Probe with Adjustable Tip	D400A-AT-PB2
6 GHz ProLink Differential Probe with Adjustable Tip	D600A-AT-PL

TELEDYNE LECROY

Everywhereyoulook"

Product Description

Product Code

Product Code

Probes and Probe Accessories (cont'd)

Probes and Probe Accessories (cont'd)	
500 MHz 60 V Common Mode Differential Probe.	DH08-PL
13 GHz differential probe with ProLink interface	DH13-PL
16 GHz differential probe with ProLink interface	DH16-PL
20 GHz differential probe with ProLink interface	DH20-PL
Programmable Current Sensor to ProBus Adapter (for use with third party current sensors)	CA10
30 A, 50 MHz Current Probe - AC/DC, 30 A rms, 50 A Peak Pulse, 1.5 meter cable	CP030
30 A, 10 MHz Current Probe - AC/DC, 30 A rms, 50 A Peak Pulse, 3 meter cable	CP030-3M
30 A, 50 MHz High Sensitivity Current Probe - AC/DC, 30 A rms, 50 A Peak Pulse, 1.5 meter cable	CP030A
30A, 100 MHz Current Probe - AC/DC, 30 A rms, 50 A Peak Pulse, 1.5 meter cable	CP031
30 A, 100 MHz High Sensitivity Current Probe - AC/DC, 30 A rms, 50 A Peak Pulse, 1.5 meter cable	CP031A
150 A, 10 MHz Current Probe - AC/DC, 150 A rms, 500 A Peak Pulse, 2 meter cable	CP150
150 A, 5 MHz Current Probe - AC/DC, 150 A rms, 500 A Peak Pulse, 6 meter cable	CP150-6M
500 A, 2 MHz Current Probe - AC/DC, 500 A rms, 700 A Peak Pulse, 6 meter cable	CP500
7.5 GHz Low Capacitance Passive Probe (÷10, 1 kΩ; ÷20, 500 Ω)	PP066
500 MHz Passive Probe, 2.5mm	PP021-1
500 MHz Passive Probe, 5mm	PP025-1
TekProbe to ProBus Probe Adapter	TPA10
* For a complete probe order a WI -PI ink-CASE Platform/Cable Assembly	

* For a complete probe, order a WL-PLink-CASE Platform/Cable Assembly with the Adjustable Tip Module.

+ For a complete probe, order a WL-PBUS-CASE Platform/Cable Assembly with the Adjustable Tip Module

A variety of other active voltage and current probes are also available. Consult Teledyne LeCroy for more information.

Customer Service

Teledyne LeCroy oscilloscopes and probes are designed, built and tested to ensure high reliability. In the unlikely event you experience difficulties, our digital oscilloscopes are fully warranted for three years and our probes are warranted for one year. This warranty includes:

- No charge for return shipping
- Long-term 7-year support
- Upgrade to latest software at no charge

Local sales offices are located throughout the world. Visit our website to find the most convenient location.

© 2023 by Teledyne LeCroy, Inc. All rights reserved. Specifications, prices, availability, and delivery subject to change without notice. PCI Express® is a registered trademark and/or service mark of PCI-SIG. USB4® and USB Type-C® are registered trademarks and/or service marks of USB-IF. MATLAB® is a registered trademark of The MathWorks, Inc. All other product or brand names are trademarks or requested trademarks of their respective holders.

1-800-5-LeCroy

teledynelecroy.com

wm8zi-b-ds-27apr23