

使用说明书

OPERATION MANUAL

TH2838 系列精密 LCR 数字电桥 TH2839 系列阻抗分析仪

V1.8@202307

目录

第1	1 章	开箱安装	1
	1.1	开箱检查	1
	1.2	电源连接	1
	1.3	保险丝	1
	1.4	环境	1
	1.5	测试夹具	2
	1.6	预热	2
	1.7	安全要求	2
		1.7.1 绝缘电阻	2
		1.7.2 绝缘强度	2
		1.7.3 泄漏电流	2
	1.8	电磁兼容性要求	2
	1.9	仪器的其它特性	3
第2	2章	概述	3
	2.1	前面板说明	3
	2.2	后面板说明	5
	2.3	显示区域定义	7
	2.4	主菜单按键和相应显示的页面	7
		2.4.1 显示主菜单按键[DISP]	7
		2.4.2 参数设置主菜单按键[SETUP]	8
		2.4.3 系统设置主菜单按键[SYSYTEM]	8
	2.5	基本操作	9
	2.6	开机和关机	9
第3	3章	[DISP]功能模块说明	.11
	3.1	<元件测量显示>页面	.11
		3.1.1 测试功能	12
		3.1.2 测试频率	
		3.1.3 AC 测试电平	
		3.1.4 测试量程	
		3.1.5 直流偏置	
		3.1.6 测试速度	
		3.1.7 直流源	
		3.1.8 其他功能	
	3.2	<档号显示>页面	
		3.2.1 参数设置	
		3.2.2 比较功能	22
	3.3	<档计数显示>页面	22
		3.3.1 参数设置	23
		3.3.2 设置步骤	23
	3.4	<列表扫描显示>页面	23
		3.4.1 参数设置	21
		U-T- 1 夕	4

3.4.2 列表显示	24
3.5 <曲线扫描显示>页面	25
3.5.1 参数设置	25
3.5.2 其他	
第 4 章 [SETUP] 功能模块说明	
4.1 <测量设置>页面	28
4.1.1 参数	28
4.1.2 触发方式	29
4.1.3 自动电平控制功能(恒电平)	30
4.1.4 触发延时	30
4.1.5 步进延时	30
4.1.6 直流偏置电平监视功能	
4.1.7 平均次数	31
4.1.8 自动偏置(BIAS)极性	31
4.1.9 直流电阻量程	32
4.1.10 直流电阻电平	33
4.1.11 直流偏置电流量程	33
4.1.12 偏置电流隔离功能	34
4.1.13 偏差与参考	34
4.2 <用户校准>页面	35
4.2.1 参数	35
4.2.2 开路校正	36
4.2.3 短路校正	38
4.2.4 负载校正	
4.2.5 电缆	40
4.2.6 单点用户校正	40
4.2.7 清除校正数据	41
4.3 <极限列表设置>页面	41
4.3.1 对调参数	42
4.3.2 比较功能极限模式	43
4.3.3 标称值设置	
4.3.4 比较器功能 ON/OFF	44
4.3.5 附属档 ON/OFF	
4.3.6 上下极限	44
4.4 <列表扫描设置>页面	45
4.4.1 列表参数设置	
4.4.2 列表用户校正	
4.4.3 列表显示设置	48
4.5 <曲线设置>页面	
4.5.1 方式	49
4.5.2 模块延时	49

第1章开箱安装

4.5.3 步进延时	49
4.5.4 极值	49
4.5.5 开始/结束	49
4.5.6 坐标	50
第5章 [SYASTEM]功能模块说明和文件管理	51
5.1 <系统设置>页面	51
5.1.1 仪表功能	51
5.1.2 按键讯响	51
5.1.3 合格讯响	51
5.1.4 不良讯响	52
5.1.5 显示语言	52
5.1.6 口令	52
5.1.7 总线方式	52
5.1.8 GPIB 地址	52
5.1.9 只讲(Talk Only)	53
5.1.10 偏置源	53
5.1.11 波特率	53
5.1.12 时间	53
5.2 <网络设置>页面	53
5.3 <handler 设置="">页面</handler>	54
5.3.1 信号线定义	
5.3.2 电气特征	
5.3.3 HANDLER 接口板电路	
5.3.4 比较功能操作	66
5.4 <通道设置>页面	
5.5 <文件管理>	67
5.5.1 单组元件设定文件(*.STA)	68
5.5.2 优盘管理性能	
5.5.3 文件管理操作	
第 6 章 执行 LCR 测量操作及示例	
6.1 "清零"校正操作	
6.1.1 全频清零:	
6.1.2 点频清零	
6.2 正确连接被测元件	
6.3 杂散阻抗的消除	
6.4 测试电感操作实例	
6.5 多频列表扫描电容操作实例	
6.6 比较器设置实例	
6.6.1 电容器分选	
6.7 负载校准操作实例	
第7章 性能与测试	
7.1 测量功能	
7.1.1 测量参数及符号	

第1章开箱安装

	7.1.2 等效方式	80
	7.1.3 量程	80
	7.1.4 触发	80
	7.1.5 延时时间	80
	7.1.6 测试端连接方式	81
	7.1.7 测量速度(频率>=10kHz 时)	81
	7.1.8 平均次数	81
	7.1.9 显示位数	81
7.2	测试信号	81
	7.2.1 测试信号频率	81
	7.2.2 信号模式	81
	7.2.3 测试信号电平	82
	7.2.4 输出阻抗	82
	7.2.5 测试信号电平监视器	82
	7.2.6 测量显示最大范围	82
	7.2.7 直流偏置电压源	82
7.3	测量准确度	83
	7.3.1 参数准确度	83
	7.3.2 测量时间	90
7.4	性能测试	90
	7.4.1 工作条件	90
	7.4.2 试验仪器和设备	90
	7.4.3 功能检查	91
	7.4.4 测试信号电平	91
	7.4.5 频率	91
	7.4.6 测量准确度	91
	7.4.7 电容量 C、损耗 D 准确度	91
	7.4.8 电感量 L 准确度	92
	7.4.9 阻抗 Z 准确度	92
	7.4.10 直流电阻 DCR 准确度	92
第8章	命令参考	93
8.1	SCPI 子系统命令	93
	8.1.1 DISPlay 子系统	94
	8.1.2 FREQuency 子系统	97
	8.1.3 VOLTage 子系统	97
	8.1.4 CURRent 子系统	98
	8.1.5 AMPLitude 子系统	98
	8.1.6 OUTPut 子系统	99
	8.1.7 BIAS 子系统	99
	8.1.8 FUNCtion 子系统	102
	8.1.9 LIST 子系统	110
	8.1.10 APERture 子系统	132
	8.1.11 TRIGger 子系统	133
	8.1.12 FETCh? 子系统	134
	8.1.13 CORRection 子系统	138
	8.1.14 COMParator 子系统	145

第1章开箱安装

8.1.16 TSSE 扫描命令树1	
O.1.10 100F 1寸加 th 人 44	e E
8.2 GPIB 公用命令1	ဝ၁
第9章 附录1	
9.1 错误提示	
9.2 异常现象记录及解释	69
9.3 说明书更改记录	

第1章 开箱安装

本章讲述当您收到仪器后必须进行的一些检查,并且在安装使用仪器之前必须了解和具备的条件。

1.1 开箱检查

感谢您购买和使用我公司产品,在开箱后您应先检查仪器是否因为运输出现 外表破损,我们不推荐您在外表破损的情况下给仪器上电。

根据装箱单进行确认,若有不符可尽快与我公司或经销商联系,以维护您的权益。

1.2 电源连接

供电电压范围: 100~120 Vac 或 198~242 Vac。与后面板电源设置有关。

供电频率范围: 47~63 Hz。

供电功率范围:不小于80 VA。

电源输入相线 L、零线 N、地线 E 应与本仪器电源插头相同。

本仪器已经经过仔细设计以减少因 AC 电源端输入带来的杂波干扰,然而仍应尽量使其在低噪声的环境下使用,如果无法避免,请安装电源滤波器。

警告: 为了防止漏电对仪器或人造成伤害,用户必须保证供电电源的地线可 靠接到大地。

1.3 保险丝

仪器出厂已配备了保险丝,用户应使用本公司配备的保险丝。

警告: 上电前应注意你的保险丝位置是否与供电电压范围符合。

1.4 环境

请不要在多尘、多震动、日光直射、有腐蚀气体下使用。

仪器正常工作时应在温度为0℃~40℃,相对湿度≤**75%**环境下,因此请尽量在此条件下使用仪器,以保证测量的准确度。

本测试仪器左侧装有散热装置以避免内部温度上升,为了确保通风良好,切 勿阻塞左右通风孔,以使本仪器维持准确度。

本仪器已经经过仔细设计以减少因 AC 电源端输入带来的杂波干扰,然而仍应尽量使其在低噪声的环境下使用,如果无法避免,请安装电源滤波器。

仪器长期不使用,请将其放在原始包装箱或相似箱子中储存在温度为5℃~40℃,相对湿度不大于85%RH的通风室内,空气中不应含有腐蚀测量仪的有害杂质,且应避免日光直射。

仪器特别是连接被测件的测试导线应远离强电磁场,以免对测量产生干扰。

1.5 测试夹具

请使用本公司配备的测试夹具或测试电缆,用户自制或其他公司的测试夹具或测试电缆可能会导致不正确的测量结果。仪器测试夹具或测试电缆应保持清洁,被测试器件引脚保持清洁,以保证被测器件与夹具接触良好。

将测试夹具或测试电缆连接于本仪器前面板的 Hcur、Hpot、Lcur、Lpot 四个测试端上。对具有屏蔽外壳的被测件,可以把屏蔽层与仪器地"一"相连。

注:没有安装测试夹具或测试电缆时,仪器将显示一个不稳定的测量结果。

1.6 预热

为保证仪器精确测量,开机预热时间应不少于15分钟。

请勿频繁开关仪器,以免引起内部数据混乱。

1.7 安全要求

测量仪为I类安全仪器。

1.7.1 绝缘电阻

在参比工作条件下,电源端子与外壳之间的绝缘电阻应不小于 50MΩ。 在运输湿热条件下,电压端子与外壳之间的绝缘电阻应不小于 2MΩ。

1.7.2 绝缘强度

在参比工作条件下,电源端子与外壳之间应能承受频率为50Hz,额定电压为1.5kV的交流电压,定时1分钟,应无击穿和飞弧现象。

1.7.3 泄漏电流

泄漏电流应不大于 3.5mA(交流有效值)。

1.8 电磁兼容性要求

- 测量仪电源瞬态敏感度 按 GB6833.4 的规定要求。
- 测量仪传导敏感度 按 GB6833.6 的规定要求。
- 测量仪辐射干扰按 GB6833.10 的规定要求。
- 性能测试

1.9 仪器的其它特性

功耗: 消耗功率≤80VA

外形尺寸(W*H*D): 400mm*132mm*385mm

重量:约13kg

第2章 概述

本章讲述了 TH2838/TH2839 系列仪器的基本操作特征。在使用 TH2838/TH2839 系列仪器之前,请详细阅读本章内容,以便你可以很快学会 TH2838/TH2839 系列仪器的操作。

2.1 前面板说明

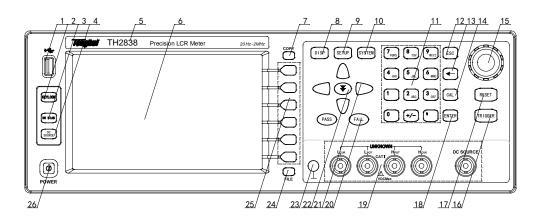


图 2-1 前面板说明

1. USB HOST接口

用于连接 U 盘存储器,进行文件的保存与调用。

2. [KEYLOCK]键

按[KEYLOCK]键,[KEYLOCK]按键会被点亮,表示当前面板按键功能被锁定;再次按[KEYLOCK]键,[KEYLOCK]按键会熄灭,表示解除键盘锁定状态。如果口令功能设置为"ON",解除键盘锁定时需输入正确的口令,否则无法解除键盘锁定。

当仪器受到 HANDLER、USB_Device、LAN 口等控制时[KEYLOCK]按键会被点亮。再次按[KEYLOCK]键,[KEYLOCK]按键会熄灭,表示回到本地解除键盘锁定状态。

3. [DC BIAS]键

[DC BIAS]键用于允许或禁止直流偏置电源输出。按[DC BIAS]键,[DC BIAS] 按键会被点亮,表示允许直流偏置输出;再次按[DC BIAS]键,[DC BIAS]按键会熄灭,表示禁止直流偏置输出。在有些无法加偏置的非测试画面,按此键无反应。

4. [DC SOURCE]键

此功能键直流电压源功能(-10~+10V)。通过独立的 DC 源端口输出,扩展 DC 控制和偏置的灵活性。如可以用于三端口器件的测量。

5. 商标及型号

仪器商标及型号

6. LCD 液晶显示屏

800x480 彩色 LCD 显示屏,显示测量结果,测量条件等。

7. [COPY]键

图片保存键,保存当前液晶显示内容为图片到 USB 存储器。

8. [DISP]键

按[DISP]键,进入仪表功能电桥相应的测试显示页面。

9. [SETUP]键

按[SETUP]键,进入仪表功能电桥相应的测试设置页面。

10. [SYSTEM]键

按[SYSTEM]键,进入系统设置页面。

11. 数值键

用于向仪器输入数据。数值键由数字键[0]至[9],小数点[.]和[+/-]键组成。

12. [Esc]键

退出键。

13. [←]键

Backspace 键,按此键删除输入数值的最后一个数字。

14. [CAL]键

预留功能。

15. 带确认功能的旋钮

移动光标,选择和设定参数。中间的确认按键功能用于终止数据输入,确认 并保存旋钮输入的数据。

16. [Trigger]键

当仪器触发方式设定为 MAN(手动)模式时,可按该键手动触发仪器。

17. [RESET]键

按[RESET]键,仅在自动扫描时终止扫描,其他页面仪器不执行任何操作。

18. [Enter]键

[Enter]键用于终止数据输入,确认并保存输入行显示的数据。

19. 测试端 (UNKNOWN)

四端测试端,用于连接四端测试夹具或测试电缆,对被测件进行测量。

- 电流激励高端(Hcur);
- 电压取样高端(Hpot);
- 电压取样低端(Lpot);
- 电流激励低端(Lcur)。

20. FAIL/PASS 指示灯

测试判断合格/不合格 LED 指示。

21. 光标键(CURSOR)

四个光标键用于在 LCD 显示页面的域和域之间移动光标。当光标移动到某一域,该域在液晶显示屏上以加亮显示。

22. 跳跃键(方向键)

可使光标在各区域间快速跳转。

23. 机壳接地端

该接线端与仪器机壳相连。可以用于保护或屏蔽接地连接。

24. 文件键(FILE)

此功能键用于快速进入文件管理界面。

25. 软键

六个软键可用于选择控制和参数,每个软键的左方都有相应的功能定义。软 键定义随显示页面不同而改变。

2.2 后面板说明

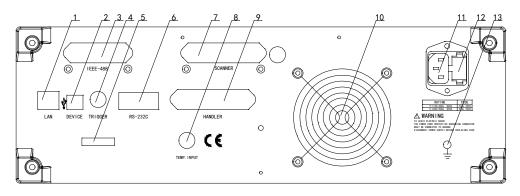


图 2-2 后面板说明

1. LAN 接口

网络接口, 实现网络系统的控制与通讯。

2. USB DEVICE接口

USB 通讯接口,实现与电脑的联机通讯。

3. IEEE-488 (GPIB) 接口

GPIB 接口,实现与电脑的联机通讯。

4. TRIGGER接口

可连接脚控等外部触发装置。

5. 序列标签

指示生产日期、仪器编号、生产厂家等信息。

6. RS232C 串行接口

串行通讯接口,实现与电脑的联机通讯。

7. SCANNER 接口

扫描接口(预留)。

8. HANDLER接口

HANDLER 接口,实现测试结果的分选输出。

9. 风扇窗

散热,维持仪器正常的工作温度。

10. 电源插座

用于输入交流电源。

11. 保险丝座

用于安装电源保险丝,保护仪器,更换内芯的方向可以切换 110V/220V。

警告: 上电前应注意你的保险丝位置是否与供电电压范围符合。

12. 机壳接地端

该接线端与仪器机壳相连。可以用于保护或屏蔽接地连接。

2.3 显示区域定义

TH2838/TH2839 采用了 7 寸电容触摸显示屏,显示屏显示的内容被划分成如下的显示区域,见图 2-3。

图 2-3 显示区域定义

1. 显示页面区域

该区域指示当前页面的名称。

2. 软键区域

该区域被用于显示软键的功能定义。软键的定义随光标所在的域的位置不同而具有不同功能的定义。

3. 测量结果/条件显示区域

该区域显示测试结果信息和当前的测试条件。

4. 助手显示区域

该区域用于显示系统提示信息。

2.4 主菜单按键和相应显示的页面

2.4.1 显示主菜单按键[DISP]

电桥功能时,用于进入元件测量显示页面。主要关于电容、电阻、电感、阻抗测量功能菜单的起始按键,这部分的功能页面有(使用"软键"选择下述页面功能,下同):

- <测量显示>
- <档号显示>
- <档计数>
- <列表扫描>
- <曲线扫描>
- <保存数据>

2.4.2 参数设置主菜单按键[SETUP]

电桥功能时,用于进入元件测试各设置画面。这部分的功能页面有:

- <测试设置>
- <用户校正>
- <极限设置>
- <列表设置>
- <曲线扫描>
- <工具>

2.4.3 系统设置主菜单按键[SYSYTEM]

用于进入系统设置主页。主要关于系统设置、文件列表功能菜单的起始按键。 这部分的功能页面有:

- <系统设置>
- <网络设置>
- <Handler 设置>

- <通道设置>
- <默认设置>
- <系统复位>

2.5 基本操作

TH2838/TH2839 的基本操作如下所述:

- 使用菜单按键([DISP],[SETUP],[SYSTEM])和软键选择用户所需的显示页面。
- 使用光标键([←][→][↑][↓])将光标移到你想要设置的域。当光标移到某一个域,该域将加亮且变为蓝色背景色显示表示。所谓域就是可以设定或改变值的区域。
- 旋钮在非输入状态时顺时针和逆时针对应方向[←][→]键的功能,旋钮中间的确认按钮在光标可改变切换的位置上可以进行输入和非输入状态。在输入状态时,旋钮的顺时针和逆时针方向可以对光标位置的数据进行切换更改。
- 当前光标所在域相应的软键功能将显示在"软键区域"中。选择并按下 所需的软键。数字键、[←]及[ENTER]键用于数据输入。
- 当一个数字键按下后,软键区域将显示可以使用的单位软键。你可以按单位软键或者[ENTER]键结束数据输入。当使用[ENTER]键结束数据输入时,数据单位为相应域参数的默认单位: Hz, V 或 A。例如测试频率的默认单位为 Hz。

2.6 开机和关机

插上三线电源插头,注意:应保持供电电压、频率等条件符合上述规定。电源输入相线 L、零线 N、地线 E 应与本仪器电源插头上的相线,零线相同。

打开电源,按下前面板上左下角电源开关,仪器开启,显示开机画面。

下图显示的是 TH2838/TH2839 的开机画面,还显示了公司 LOGO,仪器的型号(TH2838/TH2839),以及软的版本号(Ver 1.00)。

图 2-4 开机页面

如果用户开启了密码保护功能,则仪器会要求开机密码,根据屏幕提示,输入开机口令,按键[ENTER]进入主菜单画面。

注: 本系列产品设置了出厂开机密码,出厂密码为 TH2838 或 TH2839,使用单位可以在使用过程中,按自己需要,重新设定口令。详情参见 5.1.6 口令。

第3章 [DISP]功能模块说明

3.1 <元件测量显示>页面

按下[DISP]菜单键, <元件测量显示>页面将显示在屏幕上。如图 3-1 所示:

图 3-1 <元件测量显示>页面

在该页面上,测试结果将以大字符显示。下列测量控制参数可在本页面设定。

- 测试功能(功能)
- 测试频率(频率)
- 测试电平(AC电平)/(DC电平)DCR功能时为后者
- 测试量程(AC量程)/(DC量程)DCR功能时为后者
- 测试速度(速度)
- 直流偏置(DC 偏置)
- 直流电源(DC 电源)

本显示页面有 7 个域,他们是:功能,频率,AC 电平/DC 电平,AC 量程/DC 量程,速度,DC 偏置,DC 电源。每个控制功能域在下面段落将进行详细说明。

在本显示页面的测量结果/条件显示区域显示了下列测试条件信息。这些条件可在<测量设置>页面或<用户校正>页面进行设置。

- 信号源电压 / 电流监视(Vac, Iac)
- 直流源电压 / 电流监视(Vdc, Idc)

■ 开路,短路,负载校正 ON/OFF 设置状态(校正)

3.1.1 测试功能

3.1.1.1 参数

TH2838/TH2839 一个测量周期内可同时测量阻抗元件的两个参数: 1 个主参数和 1 个副参数。可测量参数如下:

主参数:			副参数:			
	Z	(阻抗的模)	= 1	D	(损耗因子)	
	Y	(导纳的模)	- (Q	(品质因数)	
	L	(电感)	= 1	Rs	(等效串联电阻 ESR)	
	С	(电容)	= 1	Rp	(等效并联电阻 EPR)	
	R	(电阻)	= ;	X	(电抗)	
	G	(电导)	= [В	(电纳)	
•	DCR	(直流电阻)	-	θ	(相位角)	
			= [Rd	(直流电阻)	

主参数和副参数测试结果分别以两行大字符显示。主参数显示在上面一行, 副参数显示在主参数下面一行。

3.1.1.2 设置步骤

- 1. 使用光标键将光标移至功能 A 域,将显示下列软键。
 - **■** Cp-...→
 - Cs-...→
 - Lp-...→
 - **■** Ls-...→
 - **■** Z-...→
- 2. 按下 Cp-···→软键,将出现如下参数选择,按下对应的软键,选择所需要的参数,按下 ← 软键,返回上一级软键菜单。
 - Cp-D
 - Cp-Q
 - Cp-G
 - Cp-Rp

■ ←

3.	按下 Cs→软键,将出现如下参数选择按下对应的软键,选择所需要的参数,按下 ← 软键,返回上一级软键菜单。
	■ Cs-D
	■ Cs-Q
	■ Cs-Rs
	■ ←
4.	按下 Lp-···→ 软键,将出现如下参数选择按下对应的软键,选择所需要的参数,按下 ← 软键,返回上一级软键菜单。
	■ Lp-D
	■ Lp-Q
	■ Lp-G
	■ Lp—Rp
	■ Lp—Rd
	■ Lp—Z
	■ ←
5.	按下 Ls····→ 软键,将出现如下参数选择按下对应的软键,选择所需要的参数,按下 ← 软键,返回上一级软键菜单。
	■ Ls-D
	■ Ls-Q
	■ Ls-Rs
	■ Ls-Rd
	■ Ls-Z
	■ ←
6.	按下 Z-···→ 软键,将出现如下参数选择按下对应的软键,选择所需要的参数,按下 ← 软键,返回上一级软键菜单。
	■ Z-d
	■ Z-r
	■ ←
7.	按 ↓ 软键,选择下一组软键:

Y**-**···→

R-···→

- G-B
- DCR
- -
- 8. 按下 Y-···→ 软键,将出现如下参数选择按下对应的软键,选择所需要的 参数,按下 ← 软键,返回上一级软键菜单。
 - Y-d
 - Y-r
 - -
- 9. 按下 R-···→软键,将出现如下参数选择按下对应的软键,选择所需要的 参数,按下 ← 软键,返回上一级软键菜单。
 - R-X
 - Rp-Q
 - Rs-Q
 - ←
- 10. 按下 G-B 软键,选择所需要的参数。
- 11. 按下 DCR 软键,选择所需要的参数。

3.1.2 测试频率

TH2838/TH2839的测试频率范围从20Hz~10MHz,最小分辨率为:0.001Hz。

TH2838A 的测试频率范围为 20Hz~1MHz,TH2838H 的测试频率范围为 20Hz~2MHz,TH2839A 的测试频率范围为 20Hz~5MHz,测试频率的最后一位代表分辨率。

3.1.2.1 频率范围

频率范围 (F)	测试频率点	分辨率
20Hz <f<99.999hz< td=""><td>20.0000Hz,20.0010Hz99.999Hz</td><td>0.001Hz</td></f<99.999hz<>	20.0000Hz,20.0010Hz99.999Hz	0.001Hz
100Hz <f<999.99hz< td=""><td>100.0Hz,100.01Hz999.99Hz</td><td>0.01Hz</td></f<999.99hz<>	100.0Hz,100.01Hz999.99Hz	0.01Hz
1kHz <f<9.9999khz< td=""><td>1.000kHz,1.0001kHz9.9999kHz</td><td>0.1Hz</td></f<9.9999khz<>	1.000kHz,1.0001kHz9.9999kHz	0.1Hz
10kHz <f<99.999khz< td=""><td>10.00kHz,10.001kHz99.999kHz</td><td>1Hz</td></f<99.999khz<>	10.00kHz,10.001kHz99.999kHz	1Hz
100kHz <f<999.99 khz<="" td=""><td>100.0kHz,100.01 kHz999.99 kHz</td><td>10Hz</td></f<999.99>	100.0kHz,100.01 kHz999.99 kHz	10Hz
1MHz <f<10mhz< td=""><td>1 MHz,1 MHz10 MHz</td><td>100 Hz</td></f<10mhz<>	1 MHz,1 MHz10 MHz	100 Hz

3.1.2.2 设置步骤:

TH2838/TH2839 有两种测试频率设置方式。一种是使用软键,另外一种是使用数字键直接输入。

1. 使用光标键将光标移至频率域。屏幕软键区显示下列软键:

■ 加 ++

该软键为频率增加粗调键。每按一下该键,频率增加至 4Hz 后下一个 10 倍 频率点。用该软键可设定的频率点如下: 4Hz, 100Hz, 1kHz, 10kHz, 100kHz, 1MHz 和 8.5MHz。

■ 加 +

该软键为频率增加精调键。每按一下该键,频率增加至下一个更高的频率点。 10 倍频率点之间有 10 个可设定的频率点。用该软键可设定的频率点如下 (TH2839 的测试频率范围从 20Hz~10MHz,TH2838A 的测试频率范围为 20Hz~1MHz,TH2838/TH2838H 的测试频率范围为 20Hz~2MHz,TH2839A 的测试频率范围为 20Hz~5MHz):

20Hz	100Hz	1kHz	10kHz	100kHz	1MHz	6MHz
25Hz	120Hz	1.2kHz	12kHz	120kHz	1.2MHz	6.5MHz
30Hz	150Hz	1.5kHz	15kHz	150kHz	1.5MHz	7MHz
40Hz	200Hz	2kHz	20kHz	200kHz	2MHz	7.5MHz
50Hz	250Hz	2.5kHz	25kHz	250kHz	3MHz	8MHz
60Hz	300Hz	3kHz	30kHz	300kHz	3.5MHz	8.5MHz
80Hz	400Hz	4kHz	40kHz	400kHz	4MHz	9MHz
	500Hz	5kHz	50kHz	500kHz	4.5MHz	10MHz
	600Hz	6kHz	60kHz	600kHz	5MHz	
	800Hz	8kHz	80kHz	800kHz		

■ 减 -

该软键为频率减小精调键。每按一下该键,频率减小至下一个更低的频率点。 10 倍频率点之间有 10 个可设定的频率点。用该软键可设定的频率点同加 + 。

■ 減 --

该软键为频率减小粗调键。每按一次该键,频率减小至下一个 **10** 倍频率点。 用该软键可设定的频率点同加 **++** 。

2. 选择或设定测试频率可使用软键或数值输入键。当用数字键输入所需的频率值时,软键显示当前可用的频率单位(Hz、kHz或MHz)。你可使用这些单位软键来输入单位和数据。当使用[ENTER]键来输入频率时,频率值单位默认为Hz。

3.1.3 AC 测试电平

TH2838/TH2839 的测试电平以测试正弦波信号的有效值进行设定。正弦波信号的频率为测试频率,由仪器内部振荡器产生。你既可以设定测试电压值,也可以设定测试电流值。电平范围 TH2838/TH2838A/TH2839/TH2839A 为 5mV~2V(测试频率超过 1MHz,5mV~1V),TH2838H 为 5mV~20V。对应电流电平模式值与内阻形成线性关系。(如果测试功能为 DCR,该项目为 DC 电平,具体 DC 电平测试参数请参考测量设置界面的描述)

3.1.3.1 电平范围

电压电平	分辨率
5 mVrms~100mVrms	100 μVrms
100 mVrms~1Vrms	1mVrms
1Vrms~20Vrms	10mVrms

表 3-2

注: TH2838/TH2839 设置的测试电流是当被测端短路时的输出电流值。设置的测试电压是当被测端开路时的输出电压值。

TH2838/TH2839 的自动电平控制功能可以实现恒定电压或电流测量。自动电平控制功能(恒电平域)可由<测量设置>页面设定为 ON。当自动电平控制功能开启后,当前电平值后显示一个"*"号。详细信息请参考<测量设置>页面。

3.1.3.2 设置步骤:

TH2838/TH2839 有两种方式可以设定测试信号源电平。一种是利用软键设定,另外一种是利用数值输入键。

- 1. 使用光标键将光标移至电平域。屏幕软键区将显示下列软键。
- 加 +

按该软键增加信号源输出电平。

■ 减 -

按该软键减小信号源输出电平。

2. 选择或设定测试电平可使用软键或数值输入键。当用数字键输入所需的电平值时,软键区显示当前可用的电平单位(mV, V, μA, mA 和 A)。你可使用这些单位软键来输入单位和数据。当使用[ENTER]键来输入电平值时,电平值单位默认为 V 或 A。

注: 当你需要将测试电平在电流和电压之间切换时,必须使用数值输入键及单位软键。

3.1.4 测试量程

测试量程根据被测 LCR 元件的阻抗值进行选择。

TH2838/TH2839 有 15 个测试量程: 0.1Ω 、 1Ω 、 10Ω 、 20Ω 、 50Ω 、 100Ω 、 200Ω 、 500Ω 、 $1k\Omega$ 、 $2k\Omega$ 、 $5k\Omega$ 、 $10k\Omega$ 、 $20k\Omega$ 、 $50k\Omega$ 、 $100k\Omega$ 。

注: TH2838H 在测试电压高于 2V 时总共 15 个量程, TH2838、TH2838A、TH2839 和 TH2839A 为不包括 0.1 的其它 14 个量程, 频率不同也会有不同的量程选择。

3.1.4.1 设置步骤:

使用光标键将光标移至量程域,使用软键对测试量程进行设置。屏幕将显示如下软键。

- 自动 该软键用于将量程设定为 AUTO(自动)模式。
- 保持 该软键用于将量程从 AUTO(自动)模式切换到 HOLD(保持)模式。当量程设置为 HOLD(保持)模式,量程将被锁定在当前测试量程。 当前测试量程将被显示在屏幕的量程域。
- 加 + 该软键用于在量程锁定(HOLD)模式下增加量程。
- 减 该软键用于在量程锁定(HOLD)模式下减小量程。

3.1.5 直流偏置

TH2838/TH2839 可提供-10V~+10V 的内置直流偏置电压。(TH2838H 为 40V)

3.1.5.1 电压范围

ì	设置值	极限值			
直流偏置	AC 测试信号电平				
Vdc (V)	Vosc (Vrms)	Vosc× √2×1.15 + Vdc×1.002 < 42V			
Vdc(V)	losc (Arms)	losc× √2×115 + Vdc×1.002 < 42V			
ldc(A)	Vosc(Vrms)	Vosc× √2×1.15 + ldc×100.2 < 42V			
ldc(A)	losc (Arms)	losc× √2×115 + ldc×100.2 < 42V			

表 3-3

3.1.5.2 设置步骤

按前面板[DCV BIAS]键,允许设定的直流偏置输出。当直流偏置被允许输出时,[DCV BIAS]按键会被点亮。

TH2838/TH2839 有两种方式可以设定直流偏置。一种是利用软键设定,另外一种是利用数值输入键。

- 1. 使用光标键将光标移至 DC 偏置域。屏幕软键区将显示下列软键。
- 加 +

按该软键增加直流偏置输出电平。

■ 减 -

按该软键减小直流偏置输出电平。

2. 选择或设定直流偏置电平可使用软键或数值输入键。当用数字键输入所需的偏置电平值时,软键区显示当前可用的直流偏置单位(mV, V, μA, mA and A)。你可使用这些单位软键来输入单位和数据。当使用[ENTER] 键来输入偏置值时,直流偏置值单位默认为 V 或 A。

注: 当你需要将直流偏置电平在电流和电压之间切换时,必须使用数值输入键及单位软键。

3.1.6 测试速度

TH2838/TH2839 测试速度主要由下列因数决定:

- 积分时间(A/D 转换)
- 平均次数(每次平均的测量次数)
- 测量延时(从启动到开始测量的时间)
- 测量数据显示时间

3.1.6.1 速度范围

一般来说,慢速测量时,测试结果更加稳定和准确。你可选择 FAST(快速), MED(中速)和 SLOW(慢速)3 种测试速度。

测量速度		测试频率						
	侧里还没	20Hz	100Hz	1kHz	10kHz	100kHz	1MHz	10MHz
1	快速	380ms	100ms	20ms	7.7ms	5.7ms	5.6ms	5.6ms
2	中速	380ms	180ms	110ms	92ms	89ms	88ms	88ms
3	慢速	480ms	300ms	240ms	230ms	220ms	220ms	220ms

表 3-4

上表的测试时间是在满足如下条件下的数据:

- 测试功能不是 Ls_Rdc、Lp_Rdc
- 量程为锁定量程
- 直流偏置电压电平监视: 关
- 直流偏置电流电平监视: 关
- 触发延时: 0s
- 步进延时: 0s
- 校准数据

- 自动电平控制:关闭
- 平均次数: 1
- 校准关闭
- 直流偏置关闭

3.1.6.2 设置步骤

使用光标键将光标移至速度域,设定测试速度,屏幕软键区将显示下列软键。

- 快速
- 中速
- 慢速

3.1.7 直流源

直流源输出端输出的直流电压的范围为-10 V 至 10 V。最小分辨率为 1mV。

注: 仅 TH2838H/TH2839/TH2839A 有此功能。

3.1.7.1 步进分辨率范围

使用加 ++ 和减 -- 的电压步进分辨率:

0V	
±1mV~±9mV	1 mV
±10mV~±99mV	10 mV
±100mV~±999mV	100 mV
±1V~±9V	1V
10V	

表 3-5

3.1.7.2 设置步骤

TH2838/TH2839 有两种方式可以设定测试信号源电平。一种是利用软键设定,另外一种是利用数值输入键。

- 1. 使用光标键将光标移至 DC 电源域。屏幕软键区将显示下列软键。
- 加++: 按表 3-5 的分辨率为步进增加直流源输出电平。
- 加+: 按该软键以 1mV 为步进增加直流源输出电平。
- 减-: 按该软键 1mV 为步进减小直流源输出电平。
- 减--: 按表 3-5 的分辨率为步进减小直流源输出电平。
- 2. 选择或设定测试电平可使用软键或数值输入键。当用数字键输入所需的电平值时,软键区显示当前可用的电平单位(mV, V)。你可使用这些单位软键来输入单位和数据。当使用[ENTER]键来输入电平值时,电平值单位默认为 V。

3.1.8 其他功能

TH2838/TH2839 测试结果数据以小数点浮动的六位数字显示。小数点锁定功能使 TH2838/TH2839 以固定小数点位置的方式输出测试结果。该功能同时可用于改变测试结果显示位数。

3.1.8.1 设置步骤:

按下列操作步骤设置小数点固定显示方式。

- **1.** 将光标移至测量结果显示区域的主参数或副参数,屏幕软键区将显示下列软键。
 - 小数自动
 - 小数锁定
 - 小字位置加 +
 - 小数位置减 -
 - 字体
- **2.** 按软键小数自动将相应光标处的主参数或副参数测试结果的小数点位置恢复成默认的小数点位置。
- 3. 按软键小数锁定锁定主参数或副参数测试结果的小数点位置。
- **4.** 按软键小数位置加 **+** ,每按一次,最后一位显示数字将会添加。显示位数增加一位。
- **5.** 按软键小数位置减 ,每按一次,最后一位显示数字将会省略。显示位数减少一位。
- **6.** 按软键字体可以切换测量显示的结果的字体,顺序为 大→小→关 轮流, 关闭时不显示测量数据,只是在主参数前面有测试指针显示测试状态。
- 注: 在下列情况小数点位置锁定功能将自动取消恢复到浮动小数点显示状态。
 - 测试功能改变。
 - 在偏差测试时,偏差测试方式(ABS、%、OFF)被改变。

3.2 <档号显示>页面

按菜单键[DISP],再按软键**档号显示**,进入**<档号显示>**页面。在**<档号显示>**页面档号以大字符显示,当前测试结果以正常的小字符显示。

图 3-2 <档号显示>页面

3.2.1 参数设置

本显示页面仅有 1 个域可操作,比较功能 ON/OFF(比较)。移动光标至比较域,使用软键,将比较功能设置为 ON(开)或 OFF(关)。

在本显示页面的测量结果/条件显示区域显示了下列测试条件信息。这些监视域看上去很象可设定域,但是这些监视域在本显示页面不能设定。这些监视域可在<测量设置>页面,<元件测量显示>页面或<用户校正>页面进行设置。

- 测试功能(功能)
- 测试频率(频率)
- 测试电平(AC电平)/(DC电平)DCR功能时为后者
- 测试量程(AC量程)/(DC量程)DCR功能时为后者
- 测试速度(速度)
- 直流偏置(DC偏置)
- 开路,短路,负载校正 ON/OFF 设置状态(校正)

3.2.2 比较功能

TH2838/TH2839 内置比较功能可将被测元件分成最多达 10 个档(BIN1 至BIN9 及 BIN OUT)。可设定 9 对主参数极限和一对副参数档极限。比较功能打开后的分选和 PASS/FAIL 指示规则如下表。当 TH2838/TH2839 安装了HANDLER 接口附件后,可将比较测试结果输出给自动测试系统,实现自动分选测试。这些极限设定只能在<极限列表设置>页面进行设定。<档号显示>页面比较域只允许设定比较功能 ON 或 OFF.

比较打开	AUX(附属)	AUX (附属)
山秋打开	ON	OFF
主参数合格	BIN1 \sim BIN9	BIN1 \sim BIN9
副参数合格	PASS	PASS
主参数不合格	BIN OUT	BIN OUT
副参数合格	PASS	PASS
主参数合格	BIN AUX	BIN OUT
副参数不合格	FAIL	FAIL
主参数不合格	BIN OUT	BIN OUT
副参数不合格	FAIL	FAIL

表 3-6

3.3 <档计数显示>页面

按菜单键[DISP],再按软键档计数,进入<档计数显示>页面。在<档计数显示>页面显示各档的计数值。

图 3-3 <档计数显示>页面

3.3.1 参数设置

本显示页面仅有 1 个域可操作, 计数功能 ON/OFF/复位计数。正下方显示了极限列表的档序号和当前测量的档计数值(包括当前超差档的档计数值)。"2nd"表示副参数极限。

在本显示页面的测量结果 / 条件显示区域显示了下列测试条件信息。这些监视域看上去很象设定域,但是这些监视域在本显示页面不能设定。这些监视域可在**<元件测试显示>**和**<极限列表设置>**页面进行设置。

■ 测试参数(**参数设置与主副参数对调**)

当前"功能"参数的对调,例如,把"Cp-D"显示为"D-Cp",表示当前把 D 作为主参数比较,而 Cp 作为副参数比较。

■ 标称值(标称)

监视进行档比较的标称值。

■ 档极限值(上限/下限)

监视极限列表的上下限值。

■ 附属档位开关(附属)

当前测量的档计数值

■ 附属档位

前超差档的档计数值

3.3.2 设置步骤

执行下列操作,在<档计数显示>页面来设定档计数功能 ON/OFF

- 1. 在<档计数显示>页面,移动光标至计数域。屏幕软键区将显示下列软键。
 - 开,按软键开,打开计数功能 ON。
 - 关,按软键关,关闭计数功能 OFF。
 - ■复位计数
- **2.** 按软键复位计数,屏幕助手显示: "复位计数确认吗"。软键区将显示下列软键。
 - 是,按软键是,将所有档计数值复位为0。
 - 否,按软键否,取消档计数值复位操作。

3.4 <列表扫描显示>页面

按菜单键[DISP],再按软键列表扫描,进入**<列表扫描显示>**页面。

图 3-4 <列表扫描显示>页面

TH2838/TH2839 在<**列表扫描显示**>页面可支持最多 201 个扫描点。每个列表扫描测试点可以设定其显示参数。自动扫描测试点,测试结果与其相应极限值进行比较。

3.4.1 参数设置

本显示页面有 2 个域可操作,扫描方式(<u>方式</u>),列表显示参数(**序号**)。 列表扫描点不能在该页面下设定,只能在**<列表扫描设置>**页面进行设置。

- 光标在**方式**域,使用软键设置扫描方式为 SEQ(顺序)或 STEP(步进)。 在 SEQ 方式下,每按[TRIGGER]键一次,所有列表扫描测试点将被自 动测试一遍。在 STEP 方式下,每按[TRIGGER]键一次,仅对一个扫描 测试点进行一次测试。
- 光标在**序号**上可以通过软键**翻页**来激活序号页面切换状态,在激活状态 下按面板的左右键可切换显示剩余参数。

注:在触发方式为 INT 内部触发时,扫描测试方式 SEQ 及 STEP 不受 [TRIGGER]键控制。将触发方式设置为 MAN 手动触发时,才能使用[TRIGGER] 键触发列表扫描测试。

3.4.2 列表显示

频率、AC 电平、DC 偏置、功能、主参数"和"比较"是默认显示参数, 若要显示更多参数, 可在列表显示设置中进行设置, 默认显示参数也可在设置中关闭。

- 频率: 当前扫描的频率
- AC 电平: 当前用户扫描的 AC 电平参数
- DC 偏置: 当前用户扫描的直流偏置参数

- 功能:用户扫描的阻抗元件的两个参数
- 主参数: 当前用户扫描的主参数结果
- 比较: 当前扫描点的比较结果, "FAIL"表示不良, "PASS"表示合格

3.5 <曲线扫描显示>页面

按菜单键[DISP],再按软键曲线扫描,进入**<曲线扫描显示>**页面。

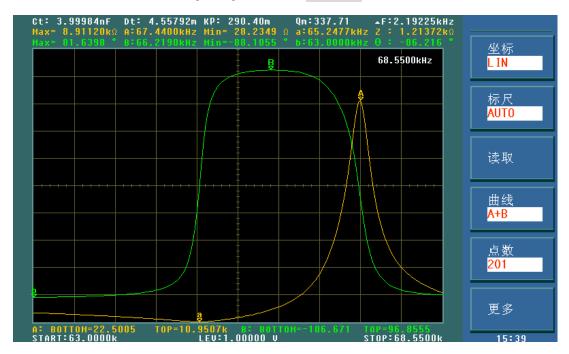


图 3-5 <曲线扫描显示>页面

这一显示功能页面对被测量元器件在用户预置的方式范围内,按 51、101、201、401 或 801 点频率每次扫描以线性或对数方式对被测元件进行方式条件递增的自动扫描测量,在 LCD 屏幕上动态显示被测元器件主副参数随方式条件变化的响应曲线,该扫描范围内的任一点结果均可在屏幕上读出。同时显示该扫描范围内被测元件的最大最小主副参数测量值及对应方式

注: 当用户设置好扫描条件后,必须按前面板的[TRIGGER]键才会开始扫描。按一次[RESET]键暂停测试,再按一次将复位重新扫描。

3.5.1 参数设置

- 菜单坐标用以改变扫描的坐标方式。
 - ► LIN: 此时扫描方式以线性方式式递增, 纵坐标也成线性方式分布。
 - LOG: 此时扫描方式以 10 为底的对数方式递增, 纵坐标也成以 10 为底的对数方式方式分布。
- 菜单标尺区域用以调整扫描曲线的显示比例。
 - AUTO: 自动调整曲线的显示比例一次,使其适合曲线显示区,调整完之后成 HOLD 状态。

- HOLD: 此时系统将保持现在的显示比例。此时,用户需在<曲线扫描设置>页面手动设置 A 最小、A 最大、B 最小、B 最大等参数以调整曲线的显示比例。
- 按菜单读取区域后进入选择界面,于该界面中通过选择 ON/OFF 来选择 是否显示极值与光标,极值显示即为主参数与副参数的极限值,如图中 显示 Max 与 Min 的值,光标为一条红线,通过转动旋钮来观察在同一 频率下,主参数与副参数的值。

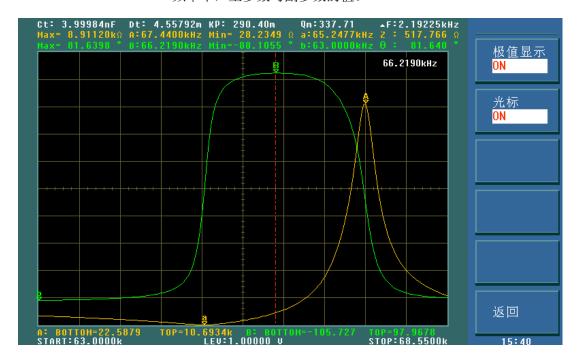


图 3-6 <曲线扫描显示>页面

- 通过曲线键可以选择曲线 A(只显示主参数),曲线 B(只显示副参数),曲线 A+B(同时显示主参数与副参数)。
- 点数参数控制了仪器扫描的方式点数。即起始和截止条件内方式步进的点数。系统设置测量点数有 51,101,201,401,801 五组。选择扫描点数越多则绘制出的图像越精密,但是扫描时间会加长。

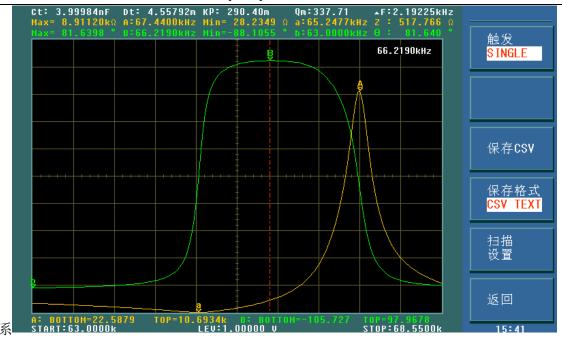


图 3-7 <曲线扫描显示>页面

- 扫描界面按软键更多之后,出现<u>触发</u>选项,single 为单次触发,continue 为连续触发。
- 扫描界面按软键更多之后,出现保存 CSV 与保存格式菜单,我们在保存格式中选择 CSV TEXT 或者 CSV DATA 之后,按保存 CSV 执行,此操作将会将测试结果保存在 U 盘中。
 - CSV TEXT:测试结果将以*.CSV 文件(EXCEL 打开)保存直接所测得的数据。
 - CSV DATA: 测试结果将以*.CSV 文件(EXCEL 打开)保存所测得的 科学计数法数据。

3.5.2 其他

当用户选择扫描参数为频率与阻抗的时候,仪器会自动显示超声器件的一些 参数,具体参数说明如下(见图 3-7 最上方区域)

静态电容 Ct: 1kHz 时静态电容值;静态电容损耗 Dt: 1kHz 时的电容损耗值。最小阻抗 Zmin 及其对应频率 fs(屏幕上 a 点),最大阻抗 Zmax 及其对应频率 fp(屏幕上 A 点)。

$$\Delta$$
 F=fp-fs

$$k_p \approx \sqrt{\frac{f_p - f_s}{f_s} \times 2.51}$$
 $Q_m \approx \frac{f_p^2}{2\pi f_s Z_{\min} C^T (f_p^2 - f_s^2)}$

第4章 [SETUP]功能模块说明

4.1 <测量设置>页面

按菜单键[SETUP],进入<测量设置>页面。如图 3-5:

图 4-1 <测量设置>页面

4.1.1 参数

在<测量设置>页面,下列测量控制参数可被设定。

- 测试功能(**功能**)
- 测试频率(频率)
- 交流测试电平(AC 电平)
- 交流测试量程(AC 量程)
- 测试速度(速度)
- 直流偏置 (**DC 偏置**)
- 直流电源(**DC 电源**)
- 触发方式(触发)
- 自动电平控制(**恒电平**)
- 触发延时时间(**触发延时**)
- 步进延时时间(**步进延时**)

- 平均次数(**平均**)
- 自动偏置极性(BIAS 极性)
- 直流电阻量程(DC 量程)
- 直流电阻的测试电压(DC 电平)
- 直流偏置量程(DCI 量程)
- 直流偏置电压电平监视 ON/OFF (VDC 监视)
- 直流偏置电流电平监视 ON/OFF (IDC 监视)
- 偏置电流隔离 ON/OFF (DCI 隔离)
- 偏差测试 A 模式 (偏差 A)
- 偏差测试 B 模式 (偏差 B)
- 偏差测试 A 参考值(参考 A)
- 偏差测试 B 参考值(参考 B)

<测量设置>页面中有一些可设定域与**<元件测量显示>**页面中相同,如下面所列。这些设定域前面已经说明过,在本节不再说明。**<**测量设置>页面中的其它设定域将在下面段落进行详细说明。

- 测试功能(**功能**)
- 测试频率(频率)
- 测试电平(AC 电平)/(DC 电平)DCR 功能时为后者
- 测试量程(AC量程)/(DC量程)DCR功能时为后者
- 测试速度(速度)
- 直流偏置 (DC 偏置)
- 直流电源(**DC 电源**)

4.1.2 触发方式

TH2838/TH2839 有下列 4 种触发方式: INT(内部触发)、MAN(手动触发)、EXT(外部触发)和 BUS(总线触发)。移动光标键至<u>触发</u>域,使用屏幕软键设置仪器触发方式 INT(内部)、MAN(手动)或 EXT(外部)。如果需将仪器设定为 BUS 触发方式,需要通过 IEEE488 接口向仪器发送 "TRIGger:SOURce BUS"命令。

- INT: TH2838/TH2839 连续重复测试。
- MAN: 每按一次前面板[TRIGGER]键, TH2838/TH2839 进行一次测试。
- EXT: HANDLER 接口每接收到一次正脉冲的触发信号, TH2838/TH2839 进行一次测试。
- BUS: IEEE488 接口每接收到一次"TRIGGER"命令,TH2838/TH2839 进行一次测试。BUS 触发方式不能在仪器前面板进行设置。

注: 当 TH2838/TH2839 正在测试时,接收到一个触发信号,该触发信号将被忽略。因此需在 TH2838/TH2839 测试完成后发送触发信号。

当需要从选装的 HANDLER 接口触发 TH2838/TH2839 时,将触发方式设置 为 EXT 方式。

4.1.3 自动电平控制功能(恒电平)

自动电平控制功能能将实际的测试电平(被测件两端的电压或流过被测件的电流)调整至你所设定的测试电平值。使用该功能能保证被测件两端的测试电压或电流保持恒定。移动光标至<u>恒电平</u>域,使用屏幕软键设置仪器恒电平功能开关ON或 OFF。

当采用自动电平控制功能时,测试电平可设定范围限制如下:

- 恒电压设置范围: 5mV_{rms}至 1V_{rms}(TH2828H 为 5 mV_{rms}至 20V_{rms})
- 恒电流设置范围: 5µA_{rms}至10mA_{rms}(TH2828H 为5 µA_{rms}至 100 mA_{rms})

注: 当恒电平功能有效时,如果电平设定超出上述范围,恒电平功能将被自动设定为 OFF。当前所设定的电平值一般作为非恒电平值。

4.1.4 触发延时

触发延时指从仪器被触发到开始测量之间的延时时间。延时功能让你可设定触发延时时间。当使用列表扫描测试功能时,在每个扫描测试点都将延时所设定的延时时间。触发延时时间设定范围为: 0s至60s,1ms为步进。当仪器被用在自动测试系统中时,触发延时功能很有用。当仪器被HANDLER接口触发后,经过触发延时时间可以保证被测件与测试端可靠接触。

移动光标至<u>触发延时</u>域。使用数值键输入延时时间。按下一个数字键后,屏幕软键区显示单位软键(msec 或 sec)。可使用这些软键代替[ENTER]键,输入对应的延时时间。

4.1.5 步进延时

步进延时是测试信号输出到每次测量之前的延迟时间。

移动光标至<u>步进延时</u>域。使用数值键输入延时时间。按下一个数字键后,屏幕软键区显示单位软键(msec 或 sec)。可使用这些软键代替[ENTER]键,输入对应的延时时间。

注: DCR 测量中有两个步进延时,因为需要加上正、负两个方向上的电压, 所有有两个测量周期。同样 Ls-Rdc 和 Lp-Rdc 测量有三个测试步骤,所以实际是 三倍步进延时时间。

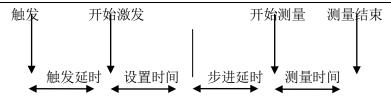


图 4-2 触发延时时间和步进延时时间示意图

(注:图中的设置时间是仪器测量的信号源控制,量程切换等的准备时间)

4.1.6 直流偏置电平监视功能

直流偏置电平监视功能能让你监视当前被测件两端的实际电压或流过被测件的偏置电压电流值。电压监视值显示在**<元件测量显示>**页面的 Vdc 监视域。电流监视值显示在**<元件测量显示>**页面的 ldc 监视域。

移动光标至 <u>VDC 监视</u>域和 <u>IDC 监视</u>域,按屏幕软键区设置电平监视功能 <u>ON</u> 或 <u>OFF</u>。

4.1.7 平均次数

TH2838/TH2839 的平均功能将 2 次或多次测试的结果进行平均值计算。平均次数可设置范围为 1 至 255,以 1 为步进。

平均次数设定两种操作方法:

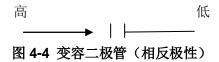
- 1. 移动光标至平均域,按下列软键设定测量平均次数。
 - 加 +: 该软键用于增加测量平均次数。
 - 减 -: 该软键用于减小测量平均次数。
- 2. 使用数字键和[ENTER]键直接输入平均次数。

4.1.8 自动偏置(BIAS)极性

自动偏置极性控制功能适用于变容二极管的测试。TH2838/TH2839 通过内部偏置(约为 1V)识别二极管的连接状态并从内部控制直流偏置的极性,使对二极管加反向偏置。当选择为 AUTO 模式时,直流偏置电压的后面有"*"提示。

移动光标至 <u>BIAS 极性</u>域。按屏幕软键区将自动偏置极性功能设置为 AUTO 或者 FIX。

例如,当变容二极管的连接如图 4-3 所示,TH2838/TH2839 识别出二极管连接正确后,就开始加上指定设置的直流偏置。反之,当变容二极管的连接如图 4-4 所示时,TH2838/TH2839 识别出二极管反向连接,并加上与指定设置极性相反的直流偏置。该功能去掉了将变容二极管连接到 UNKNOWN 端前,对其极性进行检查的必要。


注: 当直流偏置功能没打开(OFF)而且自动偏置控制功能设为AUTO时,则自动偏置极性控制功能无效。

加到变容二极管的偏置电压和设置的偏置电压相一致(高端为+,低端为-)。结果为:

偏置电压设置	实际应用的偏置电压
1V	1V
10V	10V

表 4-1

加到变容二极管的偏置电压和设置的偏置电压相反(高端为-,低端为+)。结果为:

偏置电压设置	实际应用的偏置电压
1V	-1V
10V	-10V

表 4-2

4.1.9 直流电阻量程

TH2838/TH2839 有 13 个测试量程: 10Ω , 20Ω , 50Ω , 100Ω , 200Ω , 500Ω , $1k\Omega$, $2k\Omega$, $5k\Omega$, $10k\Omega$, $20k\Omega$, $50k\Omega$, $100k\Omega$.

DCR 或者 Ls-Rdc, Lp-Rdc 中的 DCR 测量时正、负两个电压测量两个周期。

注:用户将DC量程设置为HOLD时,DCI量程和AC量程也自动设置为HOLD, 当用户将DC量程设置为AUTO时,DCI量程和AC量程也自动设置为AUTO。

注:如果在直流偏置打开时启动 DCR 测量,则直流偏置将自动切断。如果测量参数为 Lp-Rdc 和 Ls-Rdc,则直流偏置不能接通,否则会出现错误信息。

直流电阻量程设置操作步骤:

1. 使用光标键将光标移至 DC 量程域。屏幕将显示如下软键。

- 自动 该软键用于将量程设定为 AUTO(自动)模式。
- 保持 该软键用于将量程从 AUTO(自动)模式切换到 HOLD(保持)模式。当量程设置为 HOLD(保持)模式,量程将被锁定在当前测试量程。当前测试量程将被显示在屏幕的量程域。
- 加 + 该软键用于在量程锁定(HOLD)模式下增加量程。
- 减 该软键用于在量程锁定(HOLD)模式下减小量程。
- 2. 使用软键对测试量程进行设置。

4.1.10 直流电阻电平

直流电阻测量的电平设置。范围为 100mV~2V。

直流电阻电平分辨率:

电压电平	分辨率
100 mVrms~1Vrms	100µVrms
1Vrms~2Vrms	1mVrms

表 4-3

TH2838/TH2839 有两种方式可以设定直流电阻电平。一种是利用软键设定,另外一种是利用数值输入键。

- 1. 使用光标键将光标移至 **DC 电平**域。屏幕软键区将显示下列软键。
 - 加+:按该软键增加直流电阻电平。
 - 减-:按该软键减小直流电阻电平。
- 2. 选择或设定测试电平可使用软键或数值输入键。当用数字键输入所需的电平值时,软键区显示当前可用的电平单位(mV、V)。你可使用这些单位软键来输入单位和数据。当使用[ENTER]键来输入电平值时,电平值单位默认为 V。

4.1.11 直流偏置电流量程

用户可以设置 DCI 的量程。在设置 DCI 量程之前要确保 DCI 隔离直流偏置功能打开。

类型	测量量程				
标准配置	20µA	200µA	2mA	20mA	100mA

表 4-4

注: 用户将 DC 量程设置为 HOLD 时, DCI 量程和 AC 量程也自动设置为 HOLD, 当用户将 DC 量程设置为 AUTO 时, DCI 量程和 AC 量程也自动设置为 AUTO。在 DCI 隔离 OFF 的状态无法更改 DCI 量程。

直流偏置电流量程设置操作步骤:

1. 使用光标键将光标移至 **DCI 量程**域。屏幕将显示如下软键。

- 自动 该软键用于将量程设定为 AUTO(自动)模式。
- 保持 该软键用于将量程从 AUTO(自动)模式切换到 HOLD(保持)模式。当量程设置为 HOLD(保持)模式,量程将被锁定在当前测试量程。当前测试量程将被显示在屏幕的量程域。
- 加 + 该软键用于在量程锁定(HOLD)模式下增加量程。
- 减 该软键用于在量程锁定(HOLD)模式下减小量程。
- 2. 使用软键对测试量程进行设置。

4.1.12 偏置电流隔离功能

偏置电流隔离功能能够防止直流电流对测试输入电路的影响。**DCI 隔离**域可以设定偏置电流隔离功能 ON 或 OFF。当偏置电流隔离功能设置为 ON 时,流过被测件的偏置电流可达到 100 mA。当偏置电流隔离功能设置为 OFF 时,允许流过被测件的偏置电流值如表 4-5 所示。如果流过被测件的偏置电流超过表 4-5 中的值,仪器将不能进行正常测试。

测试量程	10 Ω	30 Ω	100 Ω	300 Ω	1 kΩ	3 kΩ	10 kΩ	30 Ω	100 kΩ
最大电流	2 mA	2 mA	2 mA	2 mA	1 mA	300 µA	100 µA	30 μΑ	10 µA

表 4-5 最大直流偏置电流

注: 偏置电流隔离功能打开后,对测试准确度有影响。因此当在低频率,小偏置电流条件下测试高阻抗元件时,偏置电流隔离功能应设置为 OFF。

4.1.13 偏差与参考

偏差测试功能可将偏差值代替实际测试值直接显示在屏幕上。偏差值等于当 前实际测试值减去预先设置的参考值。使用该功能可以方便地观察被测元件参数 随温度,频率,偏置等条件的变化情况。偏差测试功能可用于主参数或副参数, 或者同时用于主副参数。仪器提供两种偏差测试方式如下:

■ ABS 方式(绝对偏差方式)

当前显示的偏差为被测件的测试值与设定的参考值之差。计算 **ΔABS** 偏差的 公式如下:

 $\Delta ABS = X - Y$

X: 当前被测件的测量值

Y: 预先设定的参考值

■ **Δ%** 方式(百分比偏差方式)

当前显示的偏差为被测件的测试值与设定的参考值之差除以参考值所得到的百分比误差。计算 Δ %偏差的公式如下:

 $\Delta\% = (X - Y) / Y \times 100 [\%]$

X: 当前被测件的测量值

Y: 预先设定的参考值

偏差测试功能操作步骤:

- 1. 移动光标至参考 A 域输入主参数的参考值。当参考元件连接至被测试端,按下软键测量。TH2838/TH2839 对参考元件进行测试,测试结果被自动输入作为参考 A 的值。或使用数值键输入主参数的参考值。
- 2. 移动光标至参考 B 域输入副参数的参考值。方法同步骤 1。
- 3. 移动光标至**偏差 A**域。软键设定主参数的偏差方式 ABS、%或关闭。
- 4. 移动光标至偏差 B 域。方法同步骤 3。

4.2 <用户校准>页面

按菜单键[SETUP],按软键用户校正,进入**<用户校正>**页面。

图 4-2 < 用户校正>页面

4.2.1 参数

- 开路校正 (<u>**开路**</u>)
- 短路校正(短路)
- 负载校正(负载)
- 电缆长度选择(电缆)
- 负载校正测试功能(**功能**)

- 校正点(**校正点**)
- 开路,短路和负载校正的频率(**频率**)
- 频率点的参考值(参考 A,参考 B)
- 频率点的开路值(开路 A, 开路 B)
- 频率点的短路值 (短路 A, 短路 B)
- 频率点的负载值(负载 A, 负载 B)

本显示页面有 16 个域,他们是: <u>用户校正</u>, <u>开路</u>, <u>短路</u>, <u>负载</u>, <u>电缆</u>, <u>功</u> <u>能</u>, <u>校正点</u>, <u>频率</u>, <u>参考 A</u>, <u>参考 B</u>, <u>开路 A</u>, <u>开路 B</u>, <u>短路 A</u>, <u>短路 B</u>, <u>负载 A</u>, 负载 B, 每个控制功能域在下面段落将进行详细说明。

<用户校正>页面除上述设定域外同时还显示下列监视域。监视域和设定域很相似,但是监视域只提供信息显示,不能设定。可在频率设定域选择负载校正软件进行测试。

- 开路校正的实际测试结果。(**开路 A**, **开路 B**)
- 短路校正的实际测试结果。(**短路 A, 短路 B**)
- 负载校正的实际测试结果。(**负载 A, 负载 B**)

注: 用户校正的规则是如果开路或者短路打开,而且点频清零对应的测量频率打开,优先使用点频校正的数据。

4.2.2 开路校正

TH2838/TH2839 的开路校正功能能消除与被测元件相并联的杂散导纳(G,B)造成的误差。如图 4-3 所示。

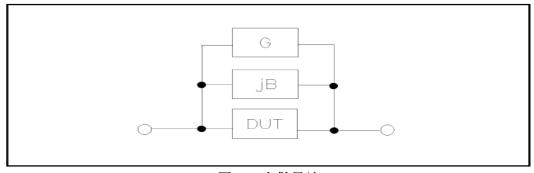


图 4-3 杂散导纳

TH2838/TH2839 采用下列两种开路校正数据方法:

1. TH2838/TH2839 不管你当前设定的频率是多少,对下列 51 个固定的频率点全部进行开路校正测试。除了下列 51 个频率点外,仪器根据这 51 个频率点的开路校正数据,采用插入计算法可以计算出所有测试频率下对应不同测试量程的开路校正数据。移动光标至<u>开路</u>域,使用软键**开路全频清零**执行全频开路清零。51 个固定频率点如下所示

TH2838/TH2828H 最高测试频率为 2MHz(51 个点),TH2838A 到 1MHz (48 个点,TH2839A 到 5MHz,TH2839 到 10MHz),以下以TH2839

为举例。

20Hz	100Hz	1kHz	10kHz	100kHz	1MHz	6MHz
25Hz	120Hz	1.2kHz	12kHz	120kHz	1.2MHz	6.5MHz
30Hz	150Hz	1.5kHz	15kHz	150kHz	1.5MHz	7MHz
40Hz	200Hz	2kHz	20kHz	200kHz	2MHz	7.5MHz
50Hz	250Hz	2.5kHz	25kHz	250kHz	3MHz	8MHz
60Hz	300Hz	3kHz	30kHz	300kHz	3.5MHz	8.5MHz
80Hz	400Hz	4kHz	40kHz	400kHz	4MHz	9MHz
	500Hz	5kHz	50kHz	500kHz	4.5MHz	10MHz
	600Hz	6kHz	60kHz	600kHz	5MHz	
	800Hz	8kHz	80kHz	800kHz		

2. 800Hz 8kHz 80kHz 800kHz TH2838/TH2839 可以在**<**用户校正**>**页面的校正点域设定校正点,然后移到<u>频率</u>域设定开路校正频率。 移动光标至**频率**使用软键**开路单频清零**对设定频率进行开路校正。

开路校正包括采用插入计算法的全频开路校正和对所设定的频率点进行的 单频开路校正。执行下列操作步骤利用插入计算法对全频率进行开路校正,单频 开路校正详见"负载校正"操作说明。

开路校正功能方法 1 操作步骤:

- 1. 移动光标至<u>开路</u>设定域,将测试夹具连接到仪器测试端。夹具开路,没 有连接到任何被测元件,屏幕软键区显示下列软键。
 - 开
 - 关
 - 开路全频清零
 - DCR 开路
- 2. 按软键**开路全频清零**,TH2838/TH2839将对65个频率点的开路导纳(电容和电感)进行测量。开路全频校正大约需要30秒的时间。在开路全频校正过程中,显示下面软键。
 - **中止**: 该软键可中止当前的开路校正测试操作。保留原来的开路校 正数据不变。
- 3. 按软键 **DCR 开路**, TH2838/TH2839 将进行直流电阻功能下开路电阻的测量。
- 4. 按软键 开 ,使开路校正有效,TH2838/TH2839 将在以后的测试过程

中进行开路校正计算。如果<u>频率</u>设置为 OFF, 开路校正计算采用插入法 所计算出的当前频率的开路校正数据。如果<u>频率</u>设置为 ON, 同时当前 测试频率等于<u>频率</u>域的频率,则<u>频率</u>域对应的开路校正数据将被用于开 路校正的计算。

5. 按软键 **关** ,关闭开路校正功能。以后的测量过程中将不再进行开路校正的计算。

4.2.3 短路校正

TH2838/TH2839 的短路校正功能能消除与被测元件相串联的寄生阻抗(R,X)造成的误差。如图 4-4 所示。

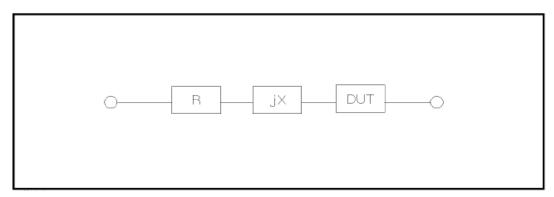


图 4-4 寄生阻抗

TH2838/TH2839 采用下列两种短路校正数据,全频短路校正和单点短路校正。(以 TH2838/TH2839 为例)

■ TH2838/TH2839 无论当前设定的频率,对 65 个固定的频率点进行短路校正测试。除 65 个频率点外,其它频率点的短路校正数据将采用插入计算法计算出不同测试频率在不同量程下的短路校正数据。移动光标至<u>短略</u>域,使用软键**短路全频清零**执行全频短路清零。65 个固定频率点与开路校正所述相同,TH2838/TH2828H最高测试频率为2MHz(51 个点),TH2838A 到 1MHz (48 个点,TH2839A 到 5MHz,TH2839 到 10MHz),以下以 TH2839 为举例。

20Hz	100Hz	1kHz	10kHz	100kHz	1MHz	6MHz
25Hz	120Hz	1.2kHz	12kHz	120kHz	1.2MHz	6.5MHz
30Hz	150Hz	1.5kHz	15kHz	150kHz	1.5MHz	7MHz
40Hz	200Hz	2kHz	20kHz	200kHz	2MHz	7.5MHz
50Hz	250Hz	2.5kHz	25kHz	250kHz	3MHz	8MHz
60Hz	300Hz	3kHz	30kHz	300kHz	3.5MHz	8.5MHz
80Hz	400Hz	4kHz	40kHz	400kHz	4MHz	9MHz
	500Hz	5kHz	50kHz	500kHz	4.5MHz	10MHz
	600Hz	6kHz	60kHz	600kHz	5MHz	

800Hz 8kHz 80kHz 800kHz

■ TH2838/TH2839 可以在<用户校正>页面的校正点域设定校正点,然后移到<u>频率</u>域设定开路校正频率。移动光标至<u>频率</u>,使用软键**短路单频清**零对设定频率进行短路校正。

短路校正包括采用插入计算法的全频短路校正和对所设定的频率点进行的 单频短路校正。执行下列操作步骤利用插入计算法对全频率进行短路校正,单频 短路校正详见"负载校正"操作说明。

短路校正功能方法1操作步骤:

- 1. 将测试夹具连接到仪器测试端,测试夹具夹着短路片进行短路操作。移 动光标至**短路**设定域,屏幕软键区显示下列软键。
 - 开
 - 美
 - 短路全频清零
 - DCR 短路
- 2. 按软键短路全频清零, TH2838/TH2839 将对 65 个频率点的短路寄生阻抗 (电阻和电抗)进行测量。短路全频校正大约需要 30 秒的时间。 在短路全频校正过程中,屏幕显示下面软键。
 - **中止**: 该软键可中止当前的短路校正测试操作。保留原来的短路校正数据不变。
- 3. 按软键 **DCR 短路**, TH2838/TH2839 将进行直流电阻功能的短路电阻的测量。
- 4. 按软键 开,使短路校正有效,TH2838/TH2839 将在以后的测试过程中进行短路校正计算。如果频率设置为 OFF,短路校正计算采用插入法所计算出的当前频率的短路校正数据。如果频率设置为 ON,同时当前测试频率等于点频清零<u>频率</u>域的频率,则频率的短路校正数据将被用于短路校正的计算。
- 5. 按软键 **关** ,关闭短路校正功能。以后的测量过程中将不再进行短路校正的计算。

4.2.4 负载校正

TH2838/TH2839 的负载校正功能利用在设定频率点的实际测试值与标准参考值之间的传递系数来消除其它测试误差。由此可见可以在设定频率点进行开路,短路和负载校正。设定频率点可以在<u>频率</u>设定域设置。标准参考值可在<u>参考 A</u>和参考 B 设定域设置。在设置标准参考值之前必须在<u>功能</u>域设定好标准值的测试功能。光标移至<u>频率</u>时,屏幕显示软键负载校正。按负载校正软键,对标准进行负载校正测试。

当进行负载校正时,必须事先输入标准器件的参考值。参考值的测试参数应 与设定的负载校正测试功能一致。

负载校正功能利用在设定频率点实际测试值与标准参考值之间的传递系数 来消除其它测试误差。负载校正测试功能仅用于计算传递系数。

负载校正功能操作步骤:

- 1. 移动光标至**频率**设定域。屏幕将显示下列软键。
 - **开**:按该软键使当前设定频率下的开路/短路/负载校正测试数据有效。
 - **关**:按该软键使当前设定频率下的开路/短路/负载校正测试数据无效。
 - **开路单频清零**:按该软键对频率执行一次开路校正测试。
 - **短路单频清零**:按该软键对频率执行一次短路校正测试。
 - **负载校正**:按该软键对频率执行一次负载校正测试。
- 2. 按软键 开, 频率设定域显示原先设置的开路/短路/负载校正频率。
- 3. 使用数值键输入校正频率。当按下任意一个数字键后,屏幕软键区显示可用频率单位软键(Hz, kHz 和 MHz)。因此你可使用这些软键代替 [ENTER]键输入校正频率。当使用[ENTER]键输入校正频率时,数据默认以 Hz 为单位。
- 4. 准备好一个测量标准器件,设定标准器件所需测量的功能参数。
- 5. 移动光标至所设定频率的参考 A 设定域,使用数值键和单位软键,输入标准器件主参数的参考值。将光标移动参考 B 设定域,使用数值键和单位软键,输入标准器件副参数的参考值。
- 6. 移动光标至对应的频率设定域,将标准器件连接到测试夹具。
- 7. 按软键**负载校正**,仪器执行一次负载校正。标准器件实际测试结果显示 在**负载 A** 和**负载 B** 监视域。
- 8. 移动光标至<u>负载</u>设定域。按软键 **开**,在以后每次测量过程中对设定频率点进行负载校正计算。

4.2.5 电缆

当前可选电缆长度为 0m、1m、2m。仪器出厂自带 0m、1m 电缆校正数据。 2m 电缆校正数据,需要客户特殊定制。

4.2.6 单点用户校正

单点用户校正是指对用户指定频率点进行开路/短路/负载修正。可通过软件或者键盘数字输入方式设定校正点,范围为 1~201。

单点校正设置操作步骤:

- 1. 使用光标键将光标移至校正点域。屏幕将显示如下软键。
 - 加++ 该软键用于以 10 为单位增加校正点数值。
 - 加 + 该软键用于以 1 为单位增加校正点数值。
 - 减 该软键用于以 1 为单位减少校正点数值。
 - 减 -- 该软键用于以 10 为单位减少校正点数值。
- 2. 使用光标键将光标移至频率域。
 - **开**: 使当前设定频率下的开路/短路/负载校正测试数据有效。
 - 关:使当前设定频率下的开路/短路/负载校正测试数据无效。
 - **开路单频清零** :按该软键对频率执行一次开路校正测试。
 - **短路单频清零** :按该软键对频率执行一次短路校正测试。
 - **负载校正**:按该软键对频率执行一次负载校正测试。
- 3. 使用数值键输入校正频率。当按下任意一个数字键后,屏幕软键区显示可用频率单位软键(Hz、kHz 和 MHz)。因此你可使用这些软键代替 [ENTER]键输入校正频率。当使用[ENTER]键输入校正频率时,数据默认以 Hz 为单位。在 OFF 状态时也可以输入频率并更新了该点的频率,在 ON 状态后才能刷新更新的频率值。

4.2.7 清除校正数据

按软键**清除校正数据**,进入清除校正数据选择。

在进入清除校正数据选择后,软键菜单显示**是**和**否**的选择。选择**是**则开始清除 201 个点的所有用户校正数据。在信息栏有提示。选择**否**则返回。

4.3 <极限列表设置>页面

按菜单键[SETUP],再按软键极限设置,进入<极限列表设置>页面。

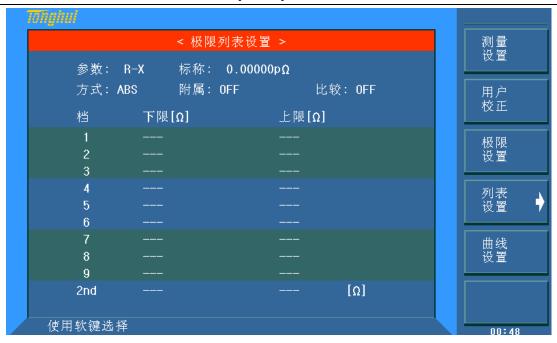


图 4-5 <极限列表设置>页面

在该页面可以对仪器比较器功能进行设置。TH2838/TH2839 可设定 9 个主参数的档极限以及一个副参数的档极限值。被测结果可分选成最多 10 个档(BIN1至 BIN9 和 BIN OUT)。如果被测件的主参数在 BIN1 至 BIN9 的极限范围内,但是其副参数不在极限范围内,这时被测件被分选到附属档中。当 TH2838/TH2839 安装了 HANDLER 接口,并运用在自动测试分选系统时,比较功能特别有用。下

列比较功能的极限参数只能在<极限列表设置>页面进行设定。

- 测试参数(参数)
- 比较功能极限方式(方式)
- 标称值(标称)
- 附属档 ON/OFF (附属)
- 比较功能 ON/OFF (比较)
- 各档下极限值(<u>LOW</u>)
- 各档上极限值(<u>HIGH</u>)

4.3.1 对调参数

对调参数功能可将<u>参数</u>设定域中的主参数和副参数互换。例如:当测试参数为: Cp-D时,参数互换功能将测试参数改为: D-Cp。这时 D可设定 9 对比较极限,而 Cp 可设定 1 对比较极限。

移动光标至<u>参数</u>设定域,按软键**对调参数**将主参数与副参数互换。也可按软键**对调参数**将主参数与副参数互换,恢复到原先设置。

4.3.2 比较功能极限模式

比较功能提供下列两种主参数极限设置模式。如图 4-6 所示。

■ 容差方式

容差方式下,将与标称值(标称值在<u>标称</u>域设定)的偏差值设定为比较极限值。偏差值有两种方式:一种是百分比偏差,另外一种是绝对值偏差。

■ 连续方式

连续方式下,将测试值范围作为比较极限值。比较极限值必须按从小到大的顺序设置。

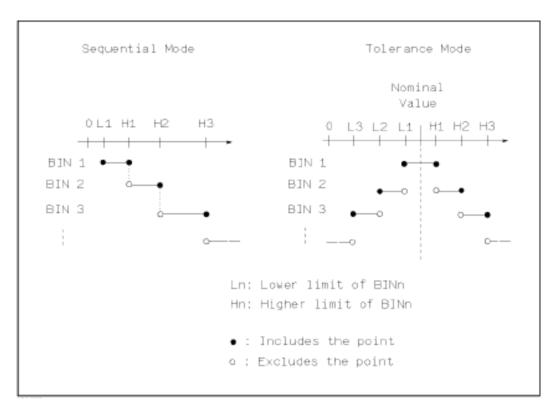


图 4-6 容差方式和连续方式

注: 当设定容差方式的极限值时,误差范围必须按照由小到大设置。如果 BINI 设置的误差范围最大,那么所有的被测件将分选到 BINI 档中。容差方式下,下极限不一定要小于标称值,上极限不一定要大于标称值。各档极限范围之间可以不连续,也可以有重叠范围。

移动光标至<u>方式</u>设定域,选择对应软键,设定极限方式:% TOL(百分比偏差的容差方式)、ABS TOL(绝对偏差的容差方式)或 SEQ MODE(连续方式)。

4.3.3 标称值设置

当选择容差方式作为主参数的极限模式时,需要设定标称值。标称值可以在 仪器显示范围内任意设定。

当选择连续方式作为主参数的极限模式时,可以设定标称值。但是在连续方式下不需要使用标称值。

移动光标至<u>标称</u>设定域。使用数值键输入标称值。当数据输入后,可使用下标软键(\mathbf{p} 、 \mathbf{n} 、 $\mathbf{\mu}$ 、 \mathbf{m} 、 \mathbf{k} 、 \mathbf{M} 、*1)代替[ENTER]键输入标称值。当使用[ENTER]键输入标称值时,标称值单位默认与上次标称值输入的单位相同。按软键*1 输入标称值时,标称值根据主参数选择 \mathbf{F} , \mathbf{H} 或 $\mathbf{\Omega}$ 作为默认单位。

4.3.4 比较器功能 ON/OFF

TH2838/TH2839 可设定 9 个主参数的档极限以及一个副参数的档极限值。测试结果可分选成最多 10 个档(BIN1 至 BIN9 和 BIN OUT)。如果被测件的主参数值在 BIN1 至 BIN9 的极限范围内,但是其副参数不在极限范围内,这时被测件被分选到附属档中。TH2838/TH2839 安装了 HANDLER 接口,并运用在自动测试分选系统时,比较功能特别有用。

移动光标至**比较**设定域,屏幕软键将比较功能设置为 ON(开)或 OFF(关)

4.3.5 附属档 ON/OFF

当需要对副参数进行分选时,可在 2nd 的<u>上限</u>和<u>下限</u>设定域设置副参数的极限值。移动光标至<u>附属</u>设定域,屏幕软键区将<u>附属</u>功能设置为 ON(开)或 OFF(关)对于副参数分选,有三种情况叙述如下:

- 在**<极限列表设置>**页面中,没有设定副参数的上下极限值。
- 在**<极限列表设置>**页面中,已经设定副参数的上下极限值。但是**附属**档 功能设置为 0FF。此时只有副参数合格的器件,主参数才能根据分选极 限进行分选。如果副参数不合格,即使其主参数在设定的极限范围内,全部被分选到 BIN OUT 档中。
- 在**<极限列表设置>**页面中,已经设定副参数的上下极限值。同时**附属**档 功能设置为 0N。若主参数不在设定的极限范围内,则被分选到 BIN OUT 档中。若被测件的主参数在极限范围内,但其副参数不在极限范围内,该被测件将被分选到附属档中。

注意: 当副参数仅设定了下极限值,附属档设置为 ON, 如果被测件的主参数 在极限设定范围内,而副参数值小于或等于副参数下限值时,被测件被分选到附属档中。同样当副参数仅设定了上极限值,附属档设置为 ON, 如果被测件的主参数在极限设定范围内,而副参数值大于或等于副参数上限值时,被测件被分选到 附属档中。

4.3.6 上下极限

TH2838/TH2839 可设定 9 个主参数的档极限以及一个副参数的档极限值。测试结果可分选成最多 10 个档(BIN1 至 BIN9 和 BIN OUT)。这些主参数上下极限可在 BIN1 至 BIN9 的<u>上限</u>和<u>下限</u>设定域中设置。副参数的上下极限可在 2nd 的<u>上</u>限和<u>下限</u>设定域中设置。

上下极限设置操作步骤:

- 1. 首先设定比较功能的测试参数,标称值以及主参数的极限方式。
- 2. 移动光标至档 1 的<u>下限</u>设定域。如果你选择容差方式执行步骤 3 至步骤 5; 如果你选择连续方式执行步骤 6 至步骤 9。
- 3. 在档 1 的<u>下限</u>设定域使用数值键输入档 1 的下限值,当数据输入后,可使用下标软键(**p**, **n**, **μ**, **m**, **k**, **M**, *1)代替[ENTER]键输入极限值。当使用[ENTER]键输入极限值时,极限值单位默认与上次极限输入的单位相同。按软键*1 时,极限值以 F,H 或 Ω 作为默认单位。在档 1 的<u>下限</u>域输入档 1 的极限值后,档 1 的下限自动设置为-(绝对值极限),档 1 的上限自动设置为+(绝对值极限)。
- 4. 光标自动跳到档 2 的<u>下限</u>设定域。重复步骤 3,直至输入档 9 的极限值。 随后光标将自动跳至 2nd 的**下限**设定域。
- 5. 输入副参数的下限值后,光标将自动跳至 2nd 的**上限**设定域。输入副参数的上限值。
- 6. 在档 1 的<u>下限</u>设定域使用数值键输入档 1 的下限值,当数据输入后,可使用下标软键(**p**, **n**, **μ**, **m**, **k**, **M**, *1)代替[ENTER]键输入极限值。当使用[ENTER]键输入极限值时,极限值单位默认与上次极限输入的单位相同。按软键*1 时,极限值以 F,H 或 Ω 作为默认单位。
- 7. 输入档1的下极限值后,光标自动跳至档1的**上限**设定域。输入档1的 上极限值。
- 8. 光标将自动跳至档 2 的**上限**设定域。因为连续方式时,档 2 的下限等于档 1 的上限值。输入档 2 的上极限。
- 9. 重复步骤 8,直至输入档 9 的上限。随后光标将自动跳至 2nd 的**下限**设定域。输入副参数的下限值。光标将自动跳至 2nd 的**上限**设定域。输入副参数的上限值。
- 10. 光标在<u>上限</u>、<u>上限</u>位置而且为非数据输入状态时,软件提供清除行和清除表格功能。清除行是把光标当前所在的行的上下限数据清除,而清除表格功能是把整个极限设置列表里的所有数据清除,包括 1~9 档和 2nd 数据。

4.4 <列表扫描设置>页面

按菜单键[SETUP],再按软键**列表设置→**,进入列表扫描下级菜单,对应有列表参数设置、列表用户校正、列表显示设置三个页面。列表扫描提供最多 201 个扫描点,支持单通道和多通道,每个扫描点可设置全参数和通道点,而不同于传统的仪器只能设置不同的频率/电平/电流/偏置电流/偏置电压/一个参数进行扫描测试。

4.4.1 列表参数设置

图 4-7 <列表扫描设置>

在<列表参数设置>页面可对下列列表扫描参数参数进行设定。

- 总的扫描点数(<u>扫描点数</u>):可选范围 1~201 个点,强制从第 1 个扫描点开始。光标在扫描点数上时可通过数字键盘输入点数,清除所有扫描点软件功能是把所有的扫描点的数据恢复为默认设置。
- 扫描方式(<u>扫描方式</u>):扫描方式菜单请参考**<列表扫描显示>**的 <u>3. 4. 1</u> 参数设置中扫描方式的内容描述。
- 通道模式(通道模式): 支持单通道和多通道(最多8通道)。
- 扫描点(**扫描点**):用于选择扫描点增加、减少、插入或清除操作。
- 扫描通道(通道):用于多通道模式下,使用不同的通道进行测试。
- 测试功能(功能)
- 測试频率(頻率)
- 交流测试电平 (AC **电平**)
- 交流测试量程(AC **量程**)
- 测试速度(速度)
- 直流偏置 (DC 偏置)
- 直流电源(**DC 电源)**
- 自动电平控制(**恒电平**)

- 步进延时时间(<u>步进延时</u>):用于每个扫描步骤测量完成后到下一步扫描测量的延时时间,主要用来连接外接偏流源(如 TH1778)加偏置电流时,适应外置偏流源而需要的延时时间设定。(**注:**和测量设置界面的延时累加)
- 平均次数(平均)
- 自动偏置极性(BIAS 极性)
- 直流电阻量程(DC 量程)
- 直流电阻电压(**DC 电平**)
- 直流偏置量程(DCI量程)
- 偏置电流隔离 ON/OFF(DCI 隔离)
- 标称值(**标称)**:用于被测件分选的标准值。
- 极限判断方式(极限方式): 绝对偏差的容差方式 ABS TOL 和百分比偏差的容差方式% TOL。
- 主参数上限 (A 上限): 设定主参数的上限。
- 主参数上限 (A下限): 设定主参数的下限。
- 副参数上限 (B上限):设定副参数的上限。
- 副参数上限 (**B下限**): 设定副参数的下限。

频率,DC 偏置,AC 电平,DC 电平,功能,速度,平均,AC 量程,DCI 量程,DCI 量程,DCI 隔离均与 4.1 测量设置页面相同

4.4.2 列表用户校正

用于在列表扫描时的用户校正。可以进行每个扫描点的开路, 短路和负载校正。方法同 **4.2**<用户校正>页面相同。

图 4-8 <列表扫描设置>

4.4.3 列表显示设置

在列表扫描设置中,每个扫描点的设置选项均可在列表扫描页面中显示,可 以设置显示参数的顺序,也可以打开或关闭显示参数

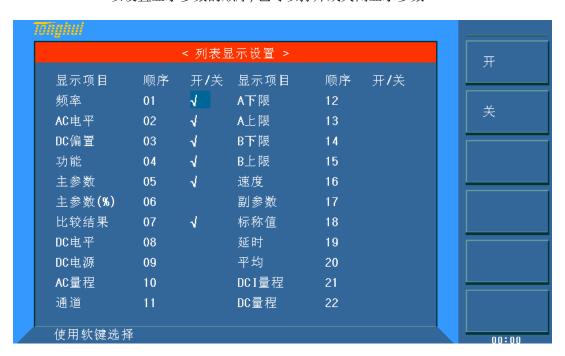


图 4-9 <列表显示设置>

- 顺序:可用键盘输入,与你输入的数字对应的参数对调位置。在<列表扫描显示>页面按照从左到右的顺序显示对应标号的参数,可以激活翻页后用左、右键查看和选择显示参数。
- 开/关: 开表示在<列表扫描显示>页面显示, 关则表示不显示, 无法看到。

4.5 <曲线设置>页面

按菜单键[SETUP],再按软键曲线设置,进入<曲线设置>页面。如图:

功能、电平、DC 偏置、量程、频率、速度详参 <u>2.6<元件参数显示>页面</u>; 曲线、标尺、坐标、触发、点数详参 <u>3.4<曲线扫描显示>页面</u>。

4.5.1 方式

此处为设定扫描方式,包括频率[Hz]、电平[V]、电平[A]、偏置[V]、偏置[A]。

4.5.2 模块延时

此处仅当偏置源是 TH1778,且扫描方式是偏置[A]时所设定的测试延时,当扫描启动,或偏置源从机准备叠加电流时,都会进行测试延时。

4.5.3 步进延时

此处为设定扫描每一点时加的延时。

4.5.4 极值

此处为设定是否显示主参数、副参数的最大值和最小值。

4.5.5 开始/结束

此处为设定曲线扫描的起始条件/结束条件。

操作: 在数字键盘(0~9/+、-/.)上选择自己想要的数字,输入完后,按[ENTER] 键或选择一个"软键区域"的相应单位确认即可。

注: 结束条件应大于开始条件,且小于该机器的设定上限,(TH2838A 频率上限为 1MHz, TH2838/TH2838H 为 2MHz, TH2839A 为 5MHz, TH2839 为

10MHz) 。

4.5.6 坐标

坐标范围设定包括 **A 最小、A 最大、B 最小、B 最大**,分别是主副参数的坐标范围。用于规范频响曲线扫描作图范围。

移动光标至上述区域,直接输入操作:在数字键盘(0~9/+、-/.)上选择自己想要的数字,输入完后,按回车键或选择一个"软键区域"的相应单位确认。仪器默认自动坐标,只有当用户锁定坐标时,才需手动设定此项。同样,最大值应大于最小值,否则提示出错信息。

<u>A DIV</u>、<u>B DIV</u>表示纵坐标每单元格的幅度大小,调整此项内容,将会改变 纵坐标最大、最小值,同时也会改变曲线在坐标系中的分布情况,此参数可以辅 助观察和分析扫描曲线的趋势。

注: 当光标移到"开始", "结束", "A,B 最大最小"时, 屏幕软键区显示"曲线扫描"; 按动对应软键即可进入<曲线扫描显示>页面。

第5章 [SYASTEM]功能模块说明和文件管理

5.1 <系统设置>页面

按菜单键[SYSTEM],进入<系统设置>页面。

图 5-1 <系统设置>

<系统设置>页面显示了大多数系统设置菜单,包括仪表功能,按键讯响,合格讯响,不良讯响,显示语言,口令,总线方式,GPIB 地址,只讲,偏置源,波特率,日期/时间等。系统设置页面的参数设置后自动保存,下次开机后为上次关机前最后设定的数据。

5.1.1 仪表功能

此区域用于控制和显示当前的仪器功能(只有电桥)。

5.1.2 按键讯响

此区域用于控制按键的声音开关。移动光标至<u>按键讯响</u>域。屏幕软键区按软键 **打开**打开按键讯响。按软键**关闭**关闭按键讯响。

5.1.3 合格讯响

此区域用于控制和显示当仪器的测量比较结果为合格品时的报警发声模式。

移动光标至**合格讯响**域。屏幕软键区显示下列软键。

- **高长**: 该软键用于选择发出高而长的报警声。
- **高短**: 该软键用于选择发出高而短的报警声。
- 低长: 该软键用于选择发出低而长的报警声。

- **两短**:该软键用于选择发出两声低而短的报警声。
- 关闭: 该软键用于选择不发出报警声。

5.1.4 不良讯响

此区域用于控制和显示当仪器的测量比较结果为不良品时的报警发声模式。设置参照合格迅响。

5.1.5 显示语言

此区域用于控制和显示当前仪器的操作语言模式。移动光标至<u>显示语言</u>域: English 该软键用于选择英文操作语言,或中文该软键用于选择中文操作语言。

5.1.6 口令

此区域显示了当前的密码保护模式。

口令设置操作步骤:

移动光标至口令域。屏幕软键区显示下列软键。

- **★闭**: 该软键用于关闭密码保护。
- **锁定系统**:该软键用于打开密码保护,包括文件保护和开机密码, KEYLOCK 状态的解锁保护。
- **锁定文件**: 该软键用于用户的文件保护。
- **修改口令**: 该软键用于修改密码。操作如下,按键**修改口令**屏幕提示输入 新口令,由键盘输入后,屏幕提示确认新口令,重复新口令,至此口令修 改完成。
- **锁定 SETUP**: 该软键用于测量设置页面的保护。

注: 出厂默认密码为 TH2838/TH2839

5.1.7 总线方式

总线方式用于选择仪器使用 RS232C、GPIB、LAN、USBTMC 或 USBCDC。

注:必须安装了本公司的 GPIB 选件, 才支持 GPIB 模式。

5.1.8 GPIB 地址

此区域用于控制和显示当前的仪器的 GPIB 接口总线地址。

总线地址设置操作步骤:

移动光标至 GPIB 地址域。屏幕软键区显示下列软键。

- 加 +: 该软键用于增加本机的总线地址。
- 减一: 该软键用于减小本机的总线地址。

5.1.9 只讲(Talk Only)

只讲功能用于控制仪器每次测量都通过它的 RS232C、GPIB、LAN、USBTMC 或 USBCDC 接口向总线发出测量结果。当只讲功能 ON 时仪器将不接受电脑的控制。

移动光标至**只讲**域。屏幕软键区按软键 **打开** 打开只讲功能。按软键 **关闭** 关闭只讲功能。

5.1.10 偏置源

偏置源功能用于选择仪器所使用的直流偏置源。:

■ INT 模式

仪器内标配的直流偏压源(-40V~+40V),直流偏流源(-100mA~100mA)。

■ TH1778

可和 TH1778 偏流源连接, 最多支持 6 台 TH1778 连接最大 120A 偏流。

注: 必须连接了本公司的 TH1778 仪器, 才支持该模式。

5.1.11 波特率

波特率用于选定仪器 RS232 接口的波特率。仪器可以从 9.600k 到 115.200k 进行选择。

波特率设置操作步骤:

移动光标至**波特率**域。屏幕软键区显示下列软键。

- 加 +: 该软键用于增加本机的波特率。
- 减一: 该软键用于减小本机的波特率。

5.1.12 时间

当移动到时间区域时,可以修改系统时间。

5.2 <网络设置>页面

按菜单键「SYSTEM」,再按软键网络设置,进入<网络设置>页面。

在后面板插上网线即可进行网口通信设置,<网络设置>页面可设置菜单: DCHP、IP 地址、子网掩码、网关和 TCP/IP 端口号。网络设置页面的参数设置后 自动保存,下次开机后为上次关机前最后设定的数据。

- DHCP:接入的组网设备(路由器或交换机)支持自动分配 IP 功能,屏幕软键区按软键 **打开** 打开该功能,按软键 **关闭** 关闭该功能。
- IP 地址、子网掩码、网关、TCP/IP 端口号:移动光标至其域,由键盘输入后,完成设置。



图 5-2 <网络设置>

5.3 <HANDLER 设置>页面

TH2838/TH2839 系列测试仪给用户提供了 Handler 接口,该接口主要用于仪器分选结果的输出。当仪器使用于自动元件分选测试系统中时,该接口提供与系统的联络信号和分选结果输出信号。分选结果输出对应比较器的 10 档输出。

HANDLER 接口设计是灵活的,使用不同的操作程序后,所有输出信号状态是根据使用要求定义的。

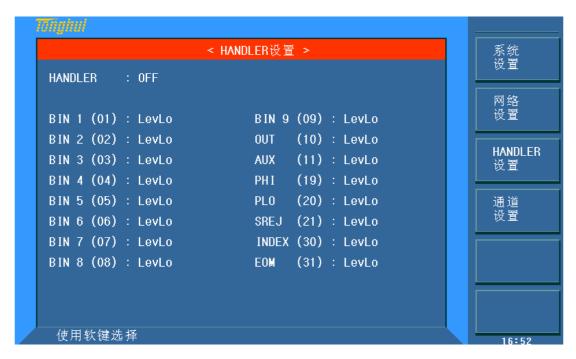


图 5-3 <HANDLER 设置>

移动光标 HANDLER 域,按键[ON]打开 HANDLER 功能。

移动光标至要设置的引脚,使其关闭低、关闭高、电平低、电平高、脉冲高、

脉冲低有效。

5.3.1 信号线定义

HANDLER 接口用三种信号:比较输出、控制输入及控制输出。档比较功能和列表扫描比较功能的信号线分别被定义成不同的比较输出信号和控制输入信号。

5.3.1.1 档比较功能

■ 比较输出信号:

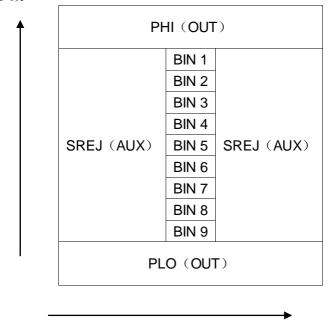
/BIN1~/BIN9, /AUX, /OUT, /PHI(主参偏高), /PLO(主参偏低), /SREJ(副参不合格)。见图 5-4

■ 控制输出信号:

/INDEX(模拟测量完成信号),/EOM(测量结束及比较数据有效信号),/ALARM(仪器掉电信号)。

■ 控制输入信号:

/EXT.TRIG(外部触发信号,脉宽≥1µs)和/Keylock(键盘锁)。


以上各接点的信号分配及简要描述见表 5-1 和图 5-5, 时序图解见图 5-6。

管脚号	信号名	描述			
1	/BIN1				
2	/BIN2				
3	/BIN3				
4	/BIN4				
5	/BIN5	分档结果			
6	/BIN6	所有/BIN(档信号)输出都是开集电			
7	/BIN7	极输出。			
8	/BIN8				
9	/BIN9				
10	/OUT				
11	/AUX				
		外部触发:			
12	/EXT.TRIG	当触发模式设为 EXT.TRIG (外部触			
13	, =,	发)时,TH2838/TH2839被加到该管			
		脚上的上升沿脉冲信号所触发。			
		外部直流电压 2:			
14	EXT.DCV2	与仪器内光电耦合的信号			
15	2,41150 12	(/EXT_TRIG, /KeyLock; /ALARM,			
		/INDEX,/EOM)的直流电源供给脚。			
16		仪器内部电源+5V:			
17	+5V	一般不推荐用户使用仪器内部的电			
18		源,如果一定要使用时,请确保使用			

		的电流小于 0.3A,且使信号线远离干 扰源。	
19	/PHI	主参数偏高: 测量结果比 BIN1 到 BIN9 中上限数值 大。(见图 5-3)	
20	/PLO	主参数偏低: 测量结果比 BIN1 到 BIN9 中下限数值 小。(见图 5-3)	
21	/SREJ	副参数不合格: 测量结果不在副参数上下限范围内。 (见图 5-3)	
22	NC		
23	NC	没有连接	
24	NC		
25	/KEY LOCK	当该线有效时,TH2838/TH2839 所有	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	前面板功能键都被锁定,不再起作用。	
27 28	EXT.DCV1	外部直流电压 1: 与 仪 器 内 光 电 耦 合 的 信 号 (/BIN-/BIN9, /AUX, /OUT, /PHI, /PLO, /SREJ) 的上拉直流电源供给 脚。	
29	/ALARM	当掉电发生时,/ALARM 有效。	
30	/INDEX	当模拟测量完成且 TH2838/TH2839 可以在 UNKNOWN 测试端连接下一 个被测件(DUT)时/INDEX 信号有效。 然而,比较结果信号直到/EOM 有效 时才是有效的。(见图 5-5)	
31	/EOM	测量结束(End Of Measurement): 当测量数据和比较结果有效时该信号 有效。(见图 5-5)	
32,33	COM2	外部电源 EXTV2 使用的参考地	
34,35,36	COM1	外部电源 EXTV1 使用的参考地	

表 5-1 档比较功能接点的信号分配表

主参数

副参数

图 5-4 档比较功能/PHI, /PLO, /SREJ 信号的分配区域示例

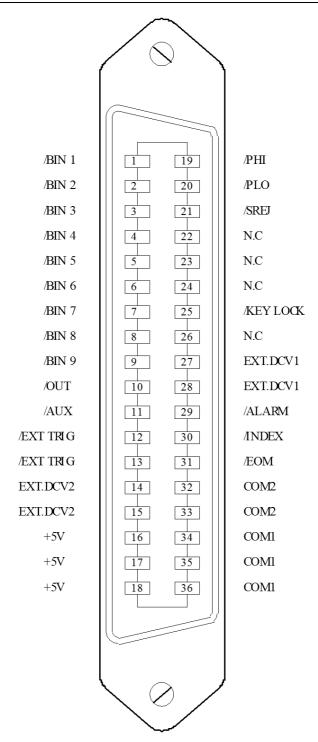
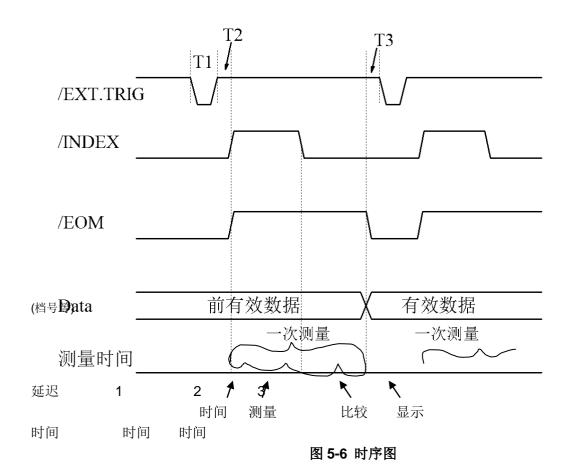



图 5-5 HANDLER 连接接口管脚定义

注:图中,/BIN1~/BIN9,/OUT,/AUX,/PHI,/PLO 及/SREJ 对应信号情况 在列表扫描比较功能和档比

时间	最小数值	最大数值			
T1 触发脉宽	1us				
T2 测量起始延迟时间	200us	显示时间 ³ + 200us			
T3 /EOM 输出后触发等待时间	0us	_			
表 5-2 时序					

- 1. 测量时间参照 TH2838/TH2839 操作说明书;
- 2. 典型的比较时间约为 1ms;
- 3. 每个显示页面的典型显示时间如下:
 - 元件测量显示页面(MEAS DISPLAY):约8ms;
 - 档号显示页面(BIN NO.DISPLAY): 约 5ms;
 - 档计数显示页面(BIN COUNT DISPLAY):约 0.5ms

5.3.1.2 列表扫描比较功能

列表扫描比较功能信号定义与档比较功能中定义不同。其定义如下所示:

■ 比较输出信号:

/BIN1 - /BIN9 和/OUT 信号指示为各扫描点的 IN/OUT(合格或超差)判别。 参见图 4。/AUX 信号指示为 PASS/FAIL 判别,(在一次扫描期间列表中有一个或 多个不合格)。当一个扫描测量完成,这些信号将被输出。

■ 控制输出信号

/INDEX(模拟测量完成信号)和/EOM(测量结束信号)。

当/INDEX 和/EOM 有效时时序如下: (和档比较功能中不同)

● 持续扫描模式 (SEQ sweep mode):

/INDEX 信号在最后一步扫描点的模拟测量完成时被声明有效。/EOM 信号在整个列表扫描测量完成后所有比较结果都有效时被声明有效。

● 单步扫描模式(STEP sweep mode):

/INDEX 信号在每一个扫描点的模拟测量完成后被声明有效。/EOM 信号在每步测量且比较完成后被声明有效。

列表扫描功能中信号接点分配和简要描述可参见表 5-3 及图 5-5 (列表扫描比较功能管脚定义和档比较功能之定义相同),时序图见图 5-8。

管脚号	信号名	描述
1	/BIN1	扫描点 1 超出极限
2	/BIN2	扫描点2超出极限
3	/BIN3	扫描点3超出极限
4	/BIN4	扫描点 4 超出极限
5	/BIN5	扫描点5超出极限
6	/BIN6	扫描点6超出极限
7	/BIN7	扫描点7超出极限
8	/BIN8	扫描点8超出极限
9	/BIN9	扫描点9超出极限
10	/OUT	扫描点 10 超出极限
11	/AUX	当列表中有一个或多个不合格时/AUX 被声明有效
30	/INDEX	持续扫描模式(SEQ): /INDEX 信号在最后一步扫描点的模拟测量完成时被声明有效,此时TH2838/TH2839之UNKNOWN测试端可以连接下一个被测件(DUT)。然而,比较结果信号直到/EOM有效时才是有效的。(见图 5)单步扫描模式(STEP): /INDEX 信号在每一个扫描点的模拟测量完成后被声明有效。然而,比较结果信号直到/EOM有效时才是有效。(见图 5)
31	/EOM	测量结束: 持续扫描模式 (SEQ): /EOM 信号在整个列表扫描测量完成后且所有比较结果都有效时被声明有效。(见图 5) 单步扫描模式 (STEP): /EOM 信号在每一个扫描点测量完成后且所有比较结果都有效时被声明有效。比较结果信号直到最后一步扫描点的/EOM 有效时才是有效 (见图 5)。
其他		定义与比较功能相同。可参见表 2

表 5-3 列表扫描比较功能接点分配表

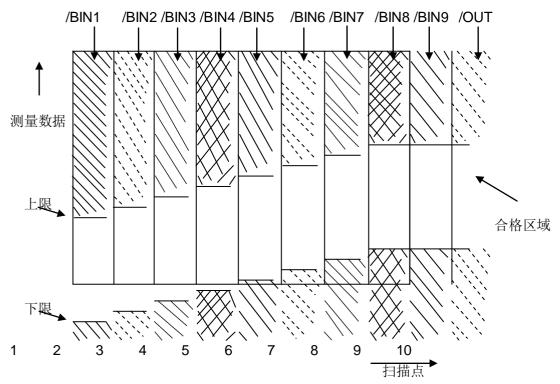


图 5-7 列表扫描比较功能信号区域示例

持续扫描模式 (SEQ SWEEP MODE):

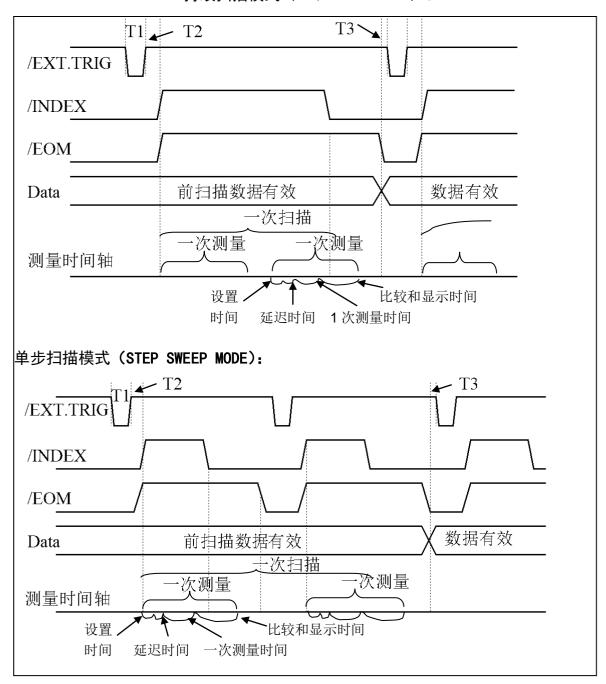


图 5-8 计时图解

注:

设置时间包括校正数据开关时间;

比较和显示时间约为 4.5ms;

T1,T2,T3 参见图 5-6。

5.3.2 电气特征

如前所述,比较功能和列表扫描比较功能中一些信号的含义不同。但是,在这两种操作中这些信号的电气特征是相同的,因而下面的描述同样适合于档比较功能和列表扫描功能。

直流隔离输出每个直流输出(管脚 1 到 16)都是经集电极开路光电耦合器输出隔离的。每根线输出电压由 HANDLER 接口板上的一上拉电阻设定。上拉电阻与内部提供电压(+5V)连接,或通过跳线与外部供给电压(EXTV: +5V)连接。

直流隔离输出的电气特征分为两个类型,见表4。

松山岸里.	输出额定电压		具十九次	中的女子地
输出信号	LOW	HIGH	最大电流	电路参考地
比较信号 /BIN1 - /BIN9 /AUX /OUT /PHI /PLO	≤0.5V	+5V+24V	6mA	内部上拉电压: TH2839 地 外部电压 (EXTV1): COM1
控制信号 /INDEX /EOM /ALARM	≤0.5V	+5V+24V	5mA	内部上拉电压: TH2839 地 外部电压 (EXTV2): COM2

表 5-4 直流隔离输出电气特征

5.3.3 HANDLER 接口板电路

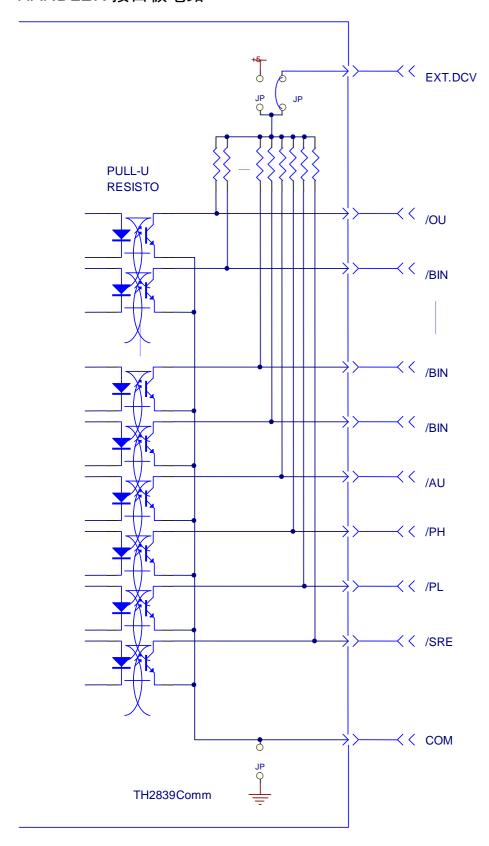


图 5-9 比较结果信号输出电路

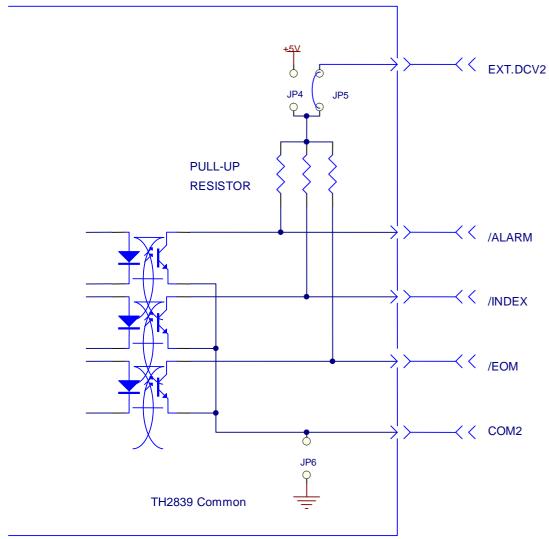


图 5-10 控制信号输出电路

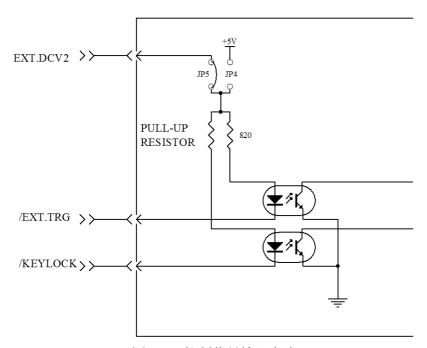


图 5-11 控制信号输入电路

5.3.4 比较功能操作

在安装了 HANDLER 接口板后,使用 HANDLER 接口,设置极限列表用以使用比较功能或设置列表扫描列表用以使用列表扫描比较功能。而后设置 HANDLER 接口使其能 OUTPUT/INPUT (输出/输入) 信号。下面的操作过程即为使用 HANDLER 接口比较功能或列表扫描比较功能的步骤。

■ 比较功能设置步骤

- 1. 按动[SETUP]再按极限设置软键,进入<极限列表设置>页面。
- 2. **《极限列表设置**》菜单中设置档计数标称值,档极限,详情可参见对应 <u>4.3</u>< 极限列表设置>页面章节说明。
- 3. 移动光标比较处,则按[0N]软键,则比较功能开启。
- 4. 按键[DISP]进入<元件测量显示>页面,然后选择档号显示或档计数软键,进入相应页面对被测件(DUT)进行测量;在此步骤中用户可以参照 [DISPLAY]菜单键说明对被测件(DUT)的计数,附属等功能进行设置。
- 注:比较功能 ON/OFF (开/关)设置在<档计数显示>页面中同样可以设置。

■ 列表扫描比较功能设置步骤

- 1. 按键[SETUP]再按列表设置软键,进入**<列表扫描设置>**页面。
- 2. 在**<列表扫描设置>**菜单中设置扫描方式,扫描频率点,参考量及上下限等,详情可参见[DISP]菜单键说明。
- 3. 按键[DISP]再按列表显示软键进入**<列表扫描显示>**页面,此页面的说明可以参考3.4<列表扫描显示>页面菜单键说明。
- 注: 使用 HANDLER 接口提高测量速度方法。
- 1. 量程锁定在你可能测到的最大的电容的量程上。比如说你最大测到 10uF, 首先,把 10uF 让仪器自动选量程测量,然后锁定此量程。
- 2. 在**<测量设置>**页面,使监视 V: OFF, 监视 I: OFF;
- 3. 放在<档计数显示>页面测试。

5.4 <通道设置>页面

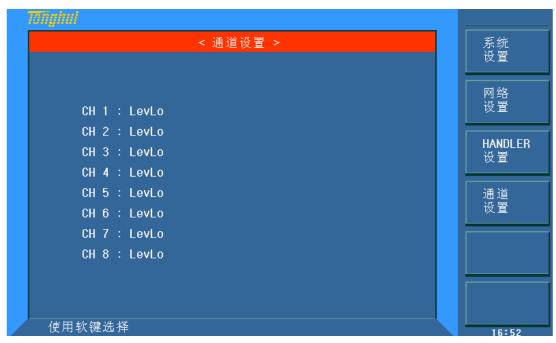


图 5-12 <通道设置>页面

移动光标值各通道,设置其为低电平或高电平有效。

5.5 <文件管理>

TH2838/TH2839 系列仪器可以将用户设定的参数以文件的形式存入仪器内部非易失性存储器,当下次要使用相同的设定时,用户无需重新设定这些参数,只需加载相应的文件,就可以得到上次设定的参数,从而提高了生产效率。

按软键文件管理可以进入<文件管理>功能页面。如图:

图 5-13 <LCR 文件列表>页面

5.5.1 单组元件设定文件(*.STA)

仪器内部最多可以保存 40 组不同的单组元件设定文件(*.STA 文件),外部存储优盘可以显示/操作 500 组不同的单组元件设定文件(注:优盘为选购件)。

在以下页面的文件管理菜单中,下列数据将以文件的形式保存或加载,称之为*.STA文件。

- <测量设置>页面的控制设定参数
 - 测试功能
 - 测试频率
 - AC 电平
 - AC 量程
 - 测试速度
 - 电压偏置
 - DC 偏置
 - DC 电源
 - 触发方式
 - 恒电平
 - 触发延时时间
 - 步进延时时间
 - 平均次数
 - BIAS 极性
 - DC 量程
 - DC 电平
 - DCI 隔离
 - VDC 监视
 - IDC 监视
 - 偏置电流隔离 ON/OFF
 - 偏差测试 A 模式
 - 偏差测试 B 模式
 - 偏差测试 A 参考值
 - 偏差测试 B 参考值
- <档计数显示>页面的控制设定参数

- 档计数 (计数/不计数)
- <极限列表设置>页面的控制设定参数
 - 测试功能(对调参数)
 - 标称值(参考值)
 - 比较方式 (%-TOL/ABS-TOL/SEQ-MODE)
 - 附属档(ON/OFF)
 - 比较功能(ON/OFF)
 - 各档的上限值和下限值
- <列表扫描设置>页面的控制设定参数
 - 列表扫描方式(SEQ/STEP)
 - 列表扫描参数(频率/电平/偏置等)
 - 全部扫描参数的测试点
 - 全部测试点主副参数的上限和下限,及分选模式
- 当前显示页面格式

5.5.2 优盘管理性能

如上所述, TH2838/TH2839 标配了 USB HOST 接口,可以用外部优盘作为存储媒体,从而突破仪器内部 40 组设定文件的存储限制,还可以把这些文件复制到带 USB 接口的 IBM PC 或与之兼容的台式机、笔记本电脑,从而达到无限扩展。

TH2838/TH2839 支持如下性能的 USB 海量存储设备(优盘):

- 符合 USB 1.0/1.1 标准
- 容量为: 32MB/256MB/2GB/4GB
- 文件格式: FAT16, FAT32 (用 Microsoft Windows 操作系统格式化)

5.5.3 文件管理操作

- 查找已存在的文件
- 转动旋钮开关或[↑]、[↓],可逐个翻看;用[←]、[→]按键,可逐页翻看。
- 2. 按软键文件名查找,输入名称字符,再按键[ENTER],可直接查找文件名。
- 3. 按软键文件序号查找,输入数字,再按键[ENTER],可直接跳至该序号的文件。
- 按照下列步骤将控制设定参数保存到文件。
- 1. 设定好所需页面的所有控制设定参数。

- 2. 按键[FILE],在文件列表中将光标移至要保存的文件位置。(或直接输入 文件序号再按键[ENTER])。
- 3. 按下保存软键,
- 4. 按软键否将取消当前保存操作并返回步骤 2;按软键是,助手行将显示: "LCR 文件名:"
- 5. 使用数字键输入当前文件名,按[ENTER]键,TH2838/TH2839 以该文件 名保存当前控制设定参数。

■ 按照下列步骤将控制设定参数从文件加载。

- 1. 按键[FILE],在文件列表中将光标移至要加载的文件位置。(或直接输入 文件序号再按键[ENTER])。
- 2. 按下加载软键, 屏幕将显示下列软键。按软键**否**将取消当前加载操作并返回步骤 1。按软键**是**,将当前所选文件被加载。TH2838/TH2839 同时返回元件测量显示页面。

■ 按照下列步骤复制文件到优盘。

- 1. 假设复制内部文件序号2到外部存储优盘
- 2. 按键 FILE, 在文件列表中将光标移至要复制的文件位置,按[ENTER]键选中。(可选多个文件)
- 3. 按键复制到 E:, 将文件复制到仪器外部存储优盘(**注:** 请确保您的优盘符 合本节所述标准,并且没有写保护)
- **4**. 在复制文件时,具备进度条提示当前复制的进度。进度条消失,文件复制操作完成。

图 5-14 进度图

第6章 执行 LCR 测量操作及示例

6.1 "清零"校正操作

执行清零操作(为了防止杂散阻抗影响测量精度,须进行开路/短路校正),用户可以使用以下两种清零方式的任意一种。

6.1.1 全频清零:

- 1. 按菜单键[SETUP],再按软键用户校正,仪器会显示为<用户校正>页面。
- 2. 移动光标到<u>开路</u>区域。保持测试夹具开路状态,按键开路全频清零执行 开路校正,一直等到状态信息提示区域显示开路校正完成。
- 3. 按键开,打开仪器的开路校正功能。
- 4. 把短路片(TH26010)插入测试夹具。
- 5. 移动光标到<u>短路</u>区域。按键短路全频清零执行短路校正,一直等到状态 信息提示区域显示短路校正完成。
- 6. 按键 开 , 打开仪器的短路校正功能。
- 7. 移动光标到负载区域。按键关,关闭仪器的负载校正功能。
- 8. 移动光标到频率区域。按键关,关闭频率的点频清零功能。

6.1.2 点频清零

假设用户现在使用的测试频率为5.5kHz(对单个频率测试的情况比较好)。

- 1. 按菜单键[SETUP],再按软键用户校正,仪器会显示为<用户校正>页面。
- 2. 移动光标到开路区域。按键 开 ,打开仪器的开路校正功能。
- 3. 移动光标到短路区域。按键 开 , 打开仪器的短路校正功能
- 4. 移动光标到负载区域。按键 关 ,关闭仪器的负载校正功能。
- 5. 移动光标到校正点区域。可以选择校正点。
- 6. 移动光标到频率区域。按键 开 , 打开频率的点频清零功能。
- 7. 按键[5][.][5], 5.5 会显示在屏幕中的光标区域,并且软件区域会显示可用的单位(Hz, kHz, 和 MHz)。按键 kHz。则<u>频率</u>区域会改为 5.5000kHz(与测试频率相同)。
- 8. 保持测试夹具开路状态,按软键开路单频清零执行开路校正。
- 9. 把短路片(TH26010)插入夹具。按软键短路单频清零执行短路校正。

6.2 正确连接被测元件

仪器具有 HCUR(电流采样高端 Hc)、LCUR(电流采样低端 Lc)、HPOT(电压采样高端 Hp)、LPOT(电压采样低端 Lp)和对应于每个测试端的屏蔽端共四对测试端。

屏蔽端的使用目的在于减小对地杂散电容的影响和降低电磁干扰。测量时 Hc、Hp 和 Lc、Lp 应在被测元件引线上连接,形成完整的四端测量,以减小引线及连接点对测试结果的影响(尤其是损耗测量)。特别是对低阻抗元件进行检测时,应将电压采样端 Hp、Lp 连接至元件的引线端,以防止引线电阻加入被测阻抗,其连接的原则为 Hp、Lp 所检测的电压应为被测件上实际存在的电压。

换言之,最好 Hc、Hp 和 Lp、Lc 不要连接后再与被测元件引线端相连接, 否则将增加测试误差。

如果接触点及引线电阻 Rlead 远小于被测阻抗 (例如: Rlead<Zx/1000, 要求误差影响小于 0.1%) 时则 Hc、Hp 及 Lp、Lc 可连接在一起后再连至被测元件两端 (两端测量)。

在进行一些精度要求较高的测量时,使用测量夹具比使用测试导线(仪器附配的开尔文夹具)要好的多。开尔文测试线在 10kHz 频率下测试时,可以有较好的测量结果,但超过 10kHz 频率时,开尔文测试线很难满足测试要求。因为在高频时,导线之间间隙的变化直接改变了测试端杂散电容和电感,而测试导线总是难以加以固定的。

因此,在较高频率进行测量时应尽可能使用测试夹具,如果由于条件所限无 法使用测试夹具,则仪器清零时测试线的状态应尽可能与测试时保持一致。

无论使用仪器提供的测试夹具或开尔文测试电缆或者用户自制夹具,应满足以下几方面的要求:

- 1. 分布阻抗必须降至最小,尤其是测量高阻抗元件时。
- 2. 接触电阻必须降至最小。
- 3. 触点间必须可以短路和开路。短路和开路清"0"可以轻易地减小测试夹具分布阻抗对测量的影响。对于开路清"0",测试端应该与被测件连接时一样,以相同的距离隔开。对于短路清"0",低阻抗的短路板应连接在测试端之间,或使 Hc、Lc 直接连接,Hp、Lp 直接连接,而后将两者连接一起。

注: 当被测元件为有极性器件时,于测试前须注意"高电位端"请接于前面板标为"+"或Hc、Hp的端子,而"低电位端"请接于前面板标为"-"或Lc、Lp的端子。

警告: 测量有极性元件时请先放电以免损害仪器

72

6.3 杂散阻抗的消除

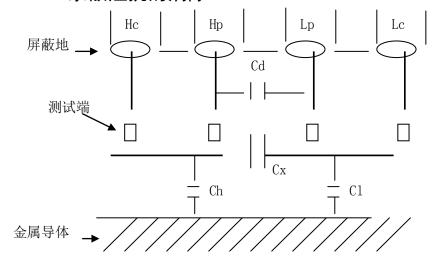


图 6-1 杂散电容的影响示意图

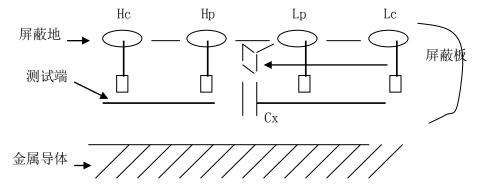


图 6-2 消除杂散电容影响方法示意图

当被测件为高阻抗时(如小电容),杂散电容的影响不能忽略,图 5-1 表示使用四端测量被测件的例子,图中,Cd 与 Cx 并联,当有导体板位于被测件之下时,电容 Ch 与 Cl 串联后也和 Cx 并联,这样会对测量结果产生误差。将一块接地导体放在测试高端和低端之间,Cd 可以降至最小,同时若把接地端子接至下面导体板,Ch、Cl 的影响将会消除。

当被测件为低阻抗时(如小电感、大电容),由于测量线 Hc、Lc 上有较大电流流过,除了测试端接触电阻的影响外,**测量线间的电磁耦合成了测量误差的主要来源**,没有很好地消除耦合会对测试结果产生意想不到的影响。一般来说,接触电阻影响测试阻抗的电阻部分,电磁耦合则影响测试阻抗的电抗部分。测试端可以采用**四端对**的连接方法,使 Hc、Lc 中流过的电流与其各屏蔽端流过大小相等而方向相反的电流,使其产生的磁场相互抵消,更好地消除互感耦合对测试结果产生的影响。

6.4 测试电感操作实例

例:测试条件如下:

■ 功能: Ls-Q

■ 频率: 5.5kHz

■ 电平: 1.5Vrms

■ 内阻: 100Ω

步骤如下:

- 1. 开机,参见 2.6 开机和关机。
- 2. 基本参数设定。
 - 1) 按菜单键[DISP], 使 TH2838/TH2839 显示到<元件测量显示>页面。

 - 3) 按键 Ls-...→。Ls-D,Ls-Q,Ls-Rs,Ls-Rd,Ls-Z 会显示。
 - 4) 按键 Ls-Q,选择 Ls-Q测试功能。
 - 5) 移动光标到**频率**区域。当前此区域显示为 1.0000kHz。
 - 6) 按键[5][.][5], 5.5 会显示在屏幕中的光标区域,并且软键区域会显示可用的单位(Hz, kHz, 和 MHz)。按键 kHz。则<u>频率</u>区域会改为 5.5000kHz。
 - 7) 移动光标到**电平**区域。当前此区域显示为 1.000V。
 - 8) 按键[1][.][5]。1.5 会显示在屏幕中的光标区域,并且软键区域会显示可用的单位(mV, V, uA, mA和A)。按键[ENTER]。则<u>电平</u>区域会改为 1.5V。
 - 9) 按菜单键[SETUP], 到<测量设置>页面。
- 3. 把测试夹具(TH26005)安装到TH2838/TH2839的测试端。
- 4. 执行清零操作(为了防止杂散阻抗影响测量精度,须进行开路/短路校正), (参见本章 <u>6.1.2 点频</u>清零)。
- 5. 把被测电感插到测试夹具上,执行测量操作。
- 6. 按菜单键[DISP],使 TH2838/TH2839 显示到<元件测量显示>页面。仪器会连续测试并把测试结果用大字显示在页面中央。
- 7. 如果发现测试结果明显不对,可进行以下操作:
 - 1) 检查被测电感是否与测试夹具可靠相连。
 - 2) 检查测试夹具是否与仪器的测试端可靠相连。

3) 重新进行可靠的开路/短路校正。

注: 当用户使用的是扫频开路/短路校正时,必须把点频校正功能选为 OFF, 参考 6.1 "清零"校正操作。

6.5 多频列表扫描电容操作实例

测试条件如下:

■ 功能: Cp-D

■ 电平: 1Vrms

■ 其他参数如下表:

频率	蒸	比较参数	下限	上限
1kH	Z	Cp(容量)	325. 0nF	333. 0nF
10k	Hz	D (损耗)	0.0001	0.0003
100	kHz	D (损耗)	0.0060	0. 0100

■ 讯响: HIGH LONG (长高声)

■ 报警方式: OUT (超差时)

步骤如下:

- 1. 开机,参见 2.6 开机和关机。
- 2. 基本参数设定。
 - 1) 按键[DISP],使 TH2838/TH2839 显示到<元件测量显示>页面。当前**功能**区域显示为 Cp-D,**电平**区域显示为 1.000 V。
 - 2) 按键[SETUP],使仪器显示到<测量设置>页面,按键列表设置,再按键列表参数设置使TH2838/TH2839显示到<列表扫描设置>页面。
 - 3) 移动光标到扫描点区域,按键[1],选择设置扫描点 1。
 - 4) 移动光标到<u>**频率**</u>区域,按键[1], 1 会显示在屏幕中的光标区域,并且软键区域会显示可用的单位(Hz, kHz, 和 MHz)。按键 kHz。则此区域会改为 1.0000kHz。

 - 按键 Cp-...→。Cp-D, Cp-Q, Cp-G, Cp-Rp 会显示。按键 Cp-D, 选择 Cp-D 测试功能。
 - 5) 移动光标到 <u>A 下限</u>区域,当前此区域显示为——。按键按键[3][2][5], 325 会显示在屏幕中的光标区域,并且软键区域会显示可用的单位 (p, n, μ, m, k)。按键 n。则此区域会改为 325.000n。
 - 6) 移动光标到 <u>A 上限</u>区域,当前此区域显示为——。按键[3][3][3],333 会显示在状态信息提示区域,并且软键区域会显示可用的单位(p,

- n, μ ,m,k)。按键 n 。则此区域会改为 333.000n。并且光标自动移到扫描点 2 的参数区域。
- 7) 移动光标到扫描点区域,按键[2],选择设置扫描点 2。
- 8) 移动光标到<u>频率</u>区域,按键[10],10 会显示在屏幕中的光标区域,并且软键区域会显示可用的单位(Hz, kHz, 和 MHz)。按键 kHz。则此区域会改为 10.0000k。
- 9) 移动光标到 <u>B下限</u>区域,当前此区域显示为——。按键[0][.][0][0][0][1], 0.0001 会显示在屏幕中的光标区域,并且软键区域会显示可用的单位(p,n, μ ,m,k)。按键[ENTER]。则此区域会改为 100.000 μ 。(或按键[1][0][0],100 会显示在状态信息提示区域,并且软键区域会显示可用的单位(p,n, μ ,m,k)。按键 μ 。则此区域会改为 100.000 μ 。)
- 10) 移动光标到 <u>**B上限**</u>区域,当前此区域显示为——。按键[0][.][0][0][0][3], 0.0003 会显示在屏幕中的光标区域,并且软键区域会显示可用的单位(p, n, μ, m, k)。按键[ENTER]。则此区域会改为 300.000μ。并且光标自动移到扫描点 3 的参数区域。(或按键[3][0][0], 100 会显示在状态信息提示区域,并且软键区域会显示可用的单位(p, n, μ, m, k)。按键 μ 。则此区域会改为 300.000μ。)
- 11) 按上述 7-10 步骤类似依次输入第 3 个扫描点的 100kHz, B 上下限 0.0060 和 0.0100。
- 3. 报警设置:
 - 1) 按键[SYSTEM], 使 TH2838/TH2839 显示到<系统设置>页面。
 - 2) 移动光标到不良讯响区域。当前此区域显示为高长。
- 4. 把测试夹具(TH26005)安装到 TH2839 的测试端。执行清零操作(为了防止杂散阻抗影响测量精度,须进行开路/短路校正。(参见本章 <u>6.1.1 全</u><u>频清零</u>)
- 5. 把被测电容插到测试夹具上,执行测量操作
- 6. 按键[DISP],再按键列表扫描,使TH2839显示到<列表扫描显示>页面。 仪器会连续扫描测试并把测试和比较结果显示在页面上,并且当比较结 果为H(上超)或L(下超)时发出讯响报警。
- 7. 如果发现测试结果明显不对,可进行以下操作:
 - 1) 检查被测器件是否与测试夹具可靠相连。
 - 2) 检查测试夹具是否与仪器的测试端可靠相连。
 - 3) 重新进行可靠的开路/短路校正。

注: 当用户使用的是扫频开路/短路校正时,必须把点频校正功能选为 OFF, 参考 6.1 "清零"校正操作。

6.6 比较器设置实例

TH2838/TH2839 提供了比较完备的比较器功能,可方便生产线元件测量与判别及进出货检验,标准配置的 HANDLER 接口使之适合于自动分选测量系统。

比较器的概念及具体操作在前章有详尽的叙述,这里举两个设置例子。

6.6.1 电容器分选

电容型号: 0805CG271

基本要求:容量分两档,J档和K档,容量合格损耗不合格时另外归档。

测量参数: 频率 100kHz, 电平 1Vrms, 慢速, 不合格时报警, 外部触发。

分选参数: J 档-4.6% ~ +4.8%,K 档-9% ~ +10%,损耗 $tg\delta$ < 0.15%

此例需设置参数如下表:

主参数(FUN1)	Ср
副参数(FUN2)	D
频率(FRQ)	100kHz
电平 (LEV)	1V
速度(SPEED)	SLOW(慢速)
附属档开关(AUX)	ON
主参数公差模式(MODE)	%TOL(百分比公差方式)
标称值(NOMINAL)	270pF
一档下限(BIN1 LOW)	-4.6%
一档上限(BIN1 HIGH)	4.8%
二档下限(BIN2 LOW)	-9%
二档上限(BIN2 HIGH)	10%
副参数下限(2nd LOW)	0.0000
副参数下限(2nd HIGH)	0.0015
触发方式 (TRIG)	EXT(外部)
报警方式(CMP ALARM)	不良讯响(高长)

表 6-1 参数

- 说明 1: 因为是小电容,其 100kHz 阻抗大于 1kΩ,因此我们选择并联 等效方式;
- 说明 2:容量任一档合档但损耗不合格时另档处理,因此打开附属档,将之归为 AUX 档。如果关闭 AUX,则损耗不合格时即整体判别为不合格。
- 说明 3:由于给定上下限是基于 270pF 标称值的百分比偏差,因此主参数选择%TOL 百分比模式。

步骤如下:

- 1. 在**<元件测量显示>**页面,选择 Cp-D,设置频率、电平、速度等
- 2. 按[SETUP]菜单键进入测量设置页面(Meas Setup),更改触发方式为 EXT(外部触发)
- 3. 按 LIMIT 进入极限列表设置页(Limit Table),设置标称值,主参数公差模式,上/下限参数,比较器开关,附属档开关:
- 4. 按[SYSTEM]菜单键进入系统设置页面(System Config),找到不良讯响项,设置为高长
- 5. 设置完成后按[DISP]返回元件测量显示页。

6.7 负载校准操作实例

假设: 用户现在使用的测试条件如下:

频率: 100kHz

Cp 标准值: 11nF

D 标准值: 0.0005

步骤如下:

- 1. 按键[SETUP],按软键 用户校正。仪器会显示为<用户校正>页面。
- 2. 移动光标到开路区域。按键 开 , 打开仪器的开路校正功能。
- 3. 移动光标到短路区域。按键 开 , 打开仪器的短路校正功能
- 4. 移动光标到负载区域。按键开,打开仪器的负载校正功能。
- 6. 按键 Cp-D 选择 Cp-D 参数。
- 7. 移动光标到频率区域。按键开,打开频率的点频校正功能。
- 8. 按键[1][0][0], 100 会显示在屏幕中的光标区域,并且软件区域会显示可用的单位(Hz,kHz,和 MHz)。按键 kHz。则<u>频率</u>区域会改为 100.000kHz(与测试频率相同)。
- 移动光标到频率的参考 A: 区域。按键[1][1], 11 会显示在屏幕中的光标区域,并且软件区域会显示可用的单位(p, n, μ, m, k)。按键 n。则此区域会改为 11.0000nF。
- 10. 移动光标到频率的**参考 B**:区域。按键[0][.][0][0][0][5],0.0005 会显示在 屏幕中的光标区域,并且软件区域会显示可用的单位(p, n, μ , m, k)。 按键[ENTER]。则此区域会改为 0.00050。
- 11. 移动光标到校正点选择校正点。

- 12. 移动光标再到<u>频率</u>区域。保持测试夹具开路状态,使手或其他干扰源远 离测试夹具。按软键开路单频清零执行开路校正。
- 13. 把短路片(TH26010)插入测试夹具,使短路片与测试夹具的簧片可靠接触。按软键短路单频清零执行短路校正。
- **14.** 把用户的标准电容插入测试夹具,使标准电容的引脚与测试夹具的簧片可靠接触。按软键负载校正执行负载校正。

注:

- 1. 由于仪器的软件版本可能不一致,会使仪器显示的软键信息和状态信息 与本书不一致,但应该不影响用户理解。
- 2. 负载校正只对同一规格的器件有效,换规格后必须重做负载校正。

第7章 性能与测试

7.1 测量功能

7.1.1 测量参数及符号

C: 电容

L: 电感

R: 电阻

Z: 阻抗

Y: 导纳

X: 电抗

B: 电纳

G: 电导

D: 损耗 θ : 相位角 Q: 品质因数

DCR: 直流电阻

数学运算:测量所得值对一可编程标称值的绝对值偏差 \triangle ABS 和百分比偏差 Δ%运算。

主参数	Z, Y	L, C	R	G
副参数	θ (deg角度), θ (rad 弧度)	D, Q, R _S , R _P , G, Rdc	Χ	В

表 7-1 参数组合

注: DCR 无测量组合。

7.1.2 等效方式

串联、并联

7.1.3 量程

自动、手动(保持、增、减)

7.1.4 触发

内部、外部、手动(参见4.1.2触发方式)

内部:连续不断的对被测件进行测量并将结果输出显示

手动:按动面板"TRIGGER"键仪器进行一次测量并将结果输出显示,平 肘

处于等待状态。

外部: 仪器 HANDLER 接口从外部接收到"启动"信号后,进行一次测量并 输出测量结果,而后再次进入等待状态。

7.1.5 延时时间

延时时间:测量触发到开始测量的时间。0—60 秒以 1ms 步进可编程。

7.1.6 测试端连接方式

采用四端对测量方式。

Hcur: 电流采样高端 Lcur: 电流采样低端

Hpot: 电压采样高端 Lpot: 电压采样低端

7.1.7 测量速度(频率>=10kHz 时)

快速:约130次/秒(7.7ms/次)

中速:约11次/秒(92ms/次)

慢速:约4次/秒(230ms/次)

中速和快速在频率小于 10kHz 时测量速度会降低。

7.1.8 平均次数

1~255, 可编程。

7.1.9 显示位数

6位,最大显示数字 999999

7.2 测试信号

7.2.1 测试信号频率

测试信号为正弦波,频率准确度: 0.01%

测试频率范围:

20Hz~10MHz (TH2839)

20Hz~1MHz (TH2838A)

20Hz~2MHz (TH2838/TH2838H)

20Hz~5MHz (TH2839A)

7.2.2 信号模式

正常:在测量显示页面上设置测试电压,测量时测量端的电压根据被测件阻抗可能比设置电压小。

恒电平: 内部电平自动调节使被测件上的电压与设定电压一致。

7.2.3 测试信号电平

	模式	范围	准确度	步进	
нπ	正常	5mVRMS—2VRMS	±(10%×设定值+2mV)	100\/	
电压	恒压	10mVRMS—1VRMS	± (6%×设定值+2mV)	100µV	
电流	正常	50 µ ARMS —20mARMS	±(10%×设定值+10 μ ARMS)	1	
电流	恒流	100 µ ARMS —10mARMS	±(6%×设定值+10 μ ARMS)	1µA	

表 7-2 测试信号电平

7.2.4 输出阻抗

 $100\Omega\pm2\%$

7.2.5 测试信号电平监视器

模式	范围	频率	准确度
电压	5mVRMS—2VRMS	≤1MHz	±(5%×读数+0.5mVrms)
电压	5mVRMS—1VRMS	>1MHz	±(10%×读数+0.5mV)
由	50µARMS—20mARMS	≤1MHz	±(5%×读数+5μA)
电流	50µARMS—10mARMS	>1MHz	±(10%×读数+5µA)

表 7-3 测试信号电平监视器

7.2.6 测量显示最大范围

参数	测量显示范围
L、Lk	0.00001µH~99.9999kH
С	0.00001pF~9.99999F
Z, R, X, DCR	0.00001Ω \sim 99.9999M Ω
Y、B、G	0.00001µs~99.9999S
D	0.00001 — 9.99999
Q	0.00001 — 99999.9
θ	Deg -179.999° ~179.999° Rad -3.14159~3.14159

表 7-4 测量显示范围

7.2.7 直流偏置电压源

0V~ ±40V 最小分辨率: 0.5mV, 准确度: 1%x 设定电压+5mV 0mA~ ±100mA 最小分辨率: 5μA, 准确度: 5%x 设定电压+50μA

7.3 测量准确度

测量准确度包含了测量稳定性、温度系数、线形度、测量重复性和校准内插误差。对仪器测量准确度进行检查时必须在下述条件下进行:

- 1. 开机预热时间: ≥30分钟
- 2. 测试电缆长度: 0m, 1m, 2m, 4m
- 3. 预热后正确地进行开路、短路清"0"
- 4. 直流偏置处于"OFF"位置
- 5. 仪器量程工作在"AUTO",以选择正确的测量范围

7.3.1 参数准确度

| Z | , | Y | , L , C , R , X , G , B 的准确度 Ae 由下式表示:

Ae = \pm [A+ (Ka+Kaa+Kb×Kbb+Kc) \times 100+ Kd] \times Ke [%]

- Ka: 阻抗比例因子(见表 A)
- Kaa: 电缆长度因子(见表 B)
- Kb: 阻抗比例因子(见表 A)
- Kbb: 电缆长度因子(见表 C)
- Kc: 校准内插因子(见表 D)
- Kd: 电缆长度因子(见表 F)
- Ke: 温度因子(见表 G)
- L, C, X, B准确度使用条件:
- Dx (D 测量值) ≤0.1
- R, G准确度使用条件: Qx(Q测量值)≤0.1
- 当 $\mathsf{Dx}{\geqslant}0.1$,对 L , C , X , B 准确度因子 Ae 应乘以 $\sqrt{1+D_x^2}$
- 当 Qx \geqslant 0.1,对 R,G 准确度因子 Ae 应乘以 $\sqrt{1+Q_x^2}$
- G 的准确度只能在 G-B 测量组合时使用

7.3.1.1 D 准确度

D准确度 De 由下式给定:

$$De = \pm \frac{A_e}{100}$$

上式仅当 Dx≤0.1 使用。

当 Dx>0.1, De 应乘以(1+Dx)

7.3.1.2 Q 准确度

Q准确度由下式给定:

$$Qe = \pm \frac{Q_x^2 \times D_e}{1 \mp Q_x \times D_e}$$

这里, Qx 是被测 Q 的测量值, De 是 D 的准确度。

该准确度在 Qx×De < 1 条件下使用。

7.3.1.3 θ 准确度

θ准确度由下式给定:

$$\theta e = \frac{180}{\pi} \times \frac{A_e}{100}$$
 [deg]
$$\theta e = \frac{A_e}{100}$$
 [rad] (弧度)

7.3.1.4 G 准确度

当 Dx (被测 D 值) ≤0.1 时

G准确度由下式给定:

Ge =
$$Bx+De$$
 [S]

$$Bx = 2 \pi fCx = \frac{1}{2\pi fL_x}$$

这里,Bx 是被测 B 的值[S],Cx 是被测 C 的值[F],Lx 是被测 L 的值[H],De 是 D 的准确度,f 是测试频率。

上述 G 准确度仅用于 Cp-G 和 Lp-G 测量组合中。

7.3.1.5 Rp 准确度

当 Dx (被测 D 值) ≤0.1 时

Rp 准确度由下式给定:

$$\mathsf{Rp} = \pm \frac{R_{px} \times D_e}{D_x \mp D_e} \qquad [\Omega]$$

这里, Rpx 是被测 Rp 的值[S]。

Dx 是被测 D 的值[F]。

De 是 D 的准确度。

7.3.1.6 Rs 准确度

当 Dx (被测 D 值) ≤0.1 时

Rs 准确度由下式给定:

Rse =
$$Xx \times De$$
 [Ω]

$$Xx = 2 \pi fLx = \frac{1}{2\pi fC_x}$$

这里, Xx 是被测 X 的值[S], Cx 是被测 C 的值[F], Lx 是被测 L 的值[H], De 是 D 的准确度, f 是测试频率。

7.3.1.7 准确度因子

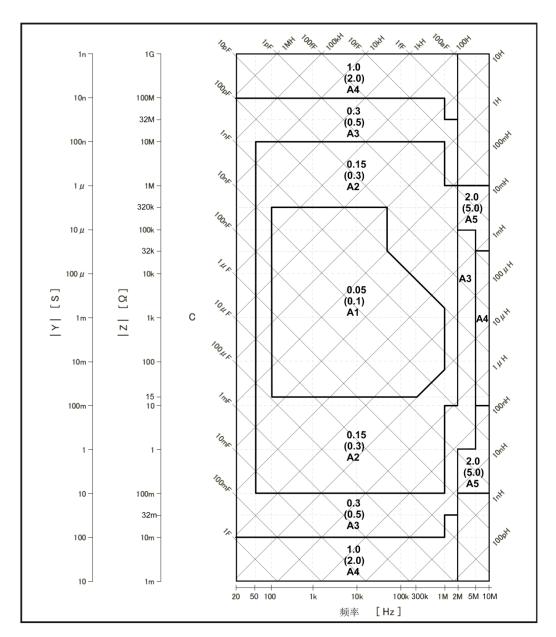


图 7-1 基本准确度 A(2 之 1)

图 7-1 中,在边界线上,选择较小的值。

基本准确度 A 值选择方法举例如下:

0.05 ---- 当 0.3Vrms≤Vs≤1Vrms,测量速度为中速、慢速的 A 值。

(0.1) ----当 0.3Vrms≤Vs≤1Vrms, 测量速度为快速的 A 值。

A1 ---- 当 Vs<0.3Vrms 或 Vs>1Vrms 的 A 值,使用图 6-4 可以找到相应的 A1, A2, A3, A4 之值。

这里, Vs 为测试信号电压。

下表中列出了在快速、中速、慢速下对应不同测试电压的 A 值, 当 Alt 未指明时使用图 6-4 寻找 Alt 之值。

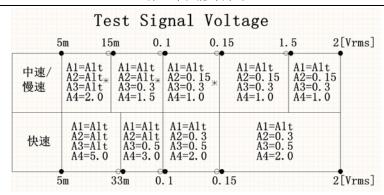


表 7-1 基本准确度

注:

- 1. 100Hz ≤f_m<300Hz 时,A 值为上表中值乘 2
- 2. fm<100Hz 时, A 值为上表中值乘 2.5
- 3. 当满足所有下列测量条件时 A 值另加 0.15
 - 测试频率: 100Hz<fm≤10MHz
 - _ 测试信号电压: 5V_{rms}<V_s≤2V_{rms}
 - DUT: 电感器, |Z_m| <200Ω (|Z_m|:DUT阻抗)

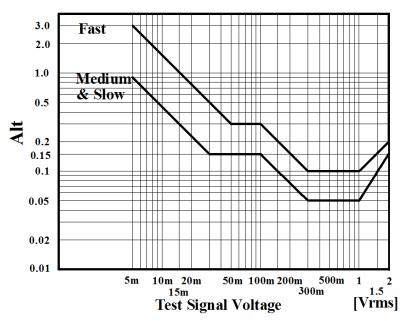


图 7-2 基本准确度 A(2 之 2)

 K_a 和 K_b 分别是低阻抗和高阻抗增加因子。阻抗大于 500Ω 时, K_a 可忽略;阻抗小于 $500\,\Omega$ 时, K_b 可忽略。

速度	频率	Ka	Kb	
	fm<100Hz	$(\frac{1\times10^{-3}}{ Z_m })(1+\frac{200}{V_s})(1+\sqrt{\frac{100}{f_m}})$	$ Z_m (1\times10^{-9})(1+\frac{70}{V_s})(1+\sqrt{\frac{100}{f_m}})$	
中速	100Hz≤fm≤100kHz	$(\frac{1\times10^{-3}}{ Z_m })(1+\frac{200}{V_s})$	$ Z_m (1\times10^{-9})(1+\frac{70}{V_s})$	
慢速	100kHz <fm≤300khz< td=""><td>$(\frac{1\times10^{-3}}{ Z_m })(2+\frac{200}{V_s})$</td><td colspan="2">$Z_m (3\times10^{-9})(1+\frac{70}{V_s})$</td></fm≤300khz<>	$(\frac{1\times10^{-3}}{ Z_m })(2+\frac{200}{V_s})$	$ Z_m (3\times10^{-9})(1+\frac{70}{V_s})$	
	300kHz <fm≤10mhz< td=""><td>$(\frac{1\times10^{-3}}{ Z_m })(3+\frac{200}{V_s}+\frac{{V_s}^2}{10^8})$</td><td>$Z_m (10\times10^{-9})(1+\frac{70}{V_s})$</td></fm≤10mhz<>	$(\frac{1\times10^{-3}}{ Z_m })(3+\frac{200}{V_s}+\frac{{V_s}^2}{10^8})$	$ Z_m (10\times10^{-9})(1+\frac{70}{V_s})$	
	fm<100Hz	$(\frac{2.5 \times 10^{-3}}{ Z_m })(1 + \frac{400}{V_s})(1 + \sqrt{\frac{100}{f_m}})$	$ Z_m (2\times10^{-9})(1+\frac{100}{V_s})(1+\sqrt{\frac{100}{f_m}})$	
快速	100Hz≤fm≤100kHz	$(\frac{2.5 \times 10^{-3}}{ Z_m })(1 + \frac{400}{V_s})$	$ Z_m (2\times10^{-9})(1+\frac{100}{V_s})$	
	100kHz <fm≤300khz< td=""><td>$(\frac{2.5\times10^{-3}}{ Z_m })(2+\frac{400}{V_s})$</td><td>$Z_m (6\times10^{-9})(1+\frac{100}{V_s})$</td></fm≤300khz<>	$(\frac{2.5\times10^{-3}}{ Z_m })(2+\frac{400}{V_s})$	$ Z_m (6\times10^{-9})(1+\frac{100}{V_s})$	
	300kHz <fm≤10mhz< td=""><td>$\left(\frac{2.5 \times 10^{-3}}{ Z_m }\right)\left(3 + \frac{400}{V_s} + \frac{{V_s}^2}{10^8}\right)$</td><td>$Z_m (20\times10^{-9})(1+\frac{100}{V_s})$</td></fm≤10mhz<>	$\left(\frac{2.5 \times 10^{-3}}{ Z_m }\right)\left(3 + \frac{400}{V_s} + \frac{{V_s}^2}{10^8}\right)$	$ Z_m (20\times10^{-9})(1+\frac{100}{V_s})$	

fm:测试频率[Hz]

|Zm|:被测件阻抗[Ω]

Vs:测试信号电压[mVrms]

表 7-2 阻抗比例因子 Ka、Kb

当阻抗大于 500Ω 时, Kaa 可忽略。

测试信号		电缆长度							
电压	0m 1m 2m		4m						
≤2V _{rms}	0	0	Ka/2	Ка					
>2V _{rms}	0	$\frac{2 \times 10^{-3} \times f_m^2}{ Z_m }$	$\frac{(1+5\times f_m^2)\times 10^{-3}}{ Z_m }$	$\frac{(2+10\times f_m^2)\times 10^{-3}}{\left Z_m\right }$					

fm:测试频率[Hz]

| Zm |: 被测件阻抗[Ω] Ka: 阻抗比例因子

表 7-3 电缆长度因子 Kaa

测试信号频率	电缆长度					
侧风后与观平	0m	1m	2m	4m		
fm≤100kHz	1	1+5×fm	1+10×fm	1+20×fm		
100kHz <fm≤300khz< td=""><td>1</td><td>1+2×fm</td><td>1+4×fm</td><td>1+8×fm</td></fm≤300khz<>	1	1+2×fm	1+4×fm	1+8×fm		
300kHz <fm≤10mhz< td=""><td>1</td><td>1+0.5×fm</td><td>1+1×fm</td><td>1+2×fm</td></fm≤10mhz<>	1	1+0.5×fm	1+1×fm	1+2×fm		
fm: 测试频率[MHz]						

表 7-4 电缆长度因子 Kbb

测试频率	Kc
直接校准频率(见表 E)	0
其它频率	0.0003

表 7-5 校准内插因子 Kc

		4	20	25	30	40	50	60	80	[Hz]
100	120	150	200	250	300	400	500	600	800	[Hz]
1	1.2	1.5	2	2.5	3	4	5	6	8	[kHz]
10	12	15	20	25	30	40	50	60	80	[kHz]
100	120	150	200	250	300	400	500	600	800	[kHz]
1	1.2	1.5	2	2.5	3	3.5	4	4.5	5	[MHz]
5.5	6	6.5	7	7.5	8	8.5				[MHz]

表 7-6 直接校准频率 (共65个频率点)

(TH2838/TH2839A 为 58 个点最高到 5MHz, TH2838/TH2839 为 65 个点)

测试信号电	电缆长度							
平	1m 2m 4m							
≤2V _{rms}	$2.5\times10^{-4} (1+50\times f_{m})$	$5 \times 10^{-4} (1+50 \times f_m)$	$1 \times 10^{-3} (1 + 50 \times f_m)$					
f _m : 测试频率[MHz]								

表 7-7 电缆长度因子 Kd

温度 (℃)	į	5 8		10 /	28 3	88
K _e	6	4	2	1	2	4

表 7-8 温度因子 Ke

7.3.1.8 直流电阻 DCR 准确度

 $A(1+R_x/5M\Omega+16m\Omega/R_x)[\%] \pm 0.2m\Omega$

中速、慢速时, A=0.25

快速时, A=0.5

这里, Rx 为被测电阻。

7.3.2 测量时间

测量时间 (ms) (直流偏置关闭)

	测量速度	测试频率						
	侧里还没	20Hz	100Hz	1kHz	10kHz	100kHz	$1 \mathrm{MHz}$	8.5MHz
1	快速	380	100	20	7. 7	5. 7	5. 6	5. 6
2	中速	380	180	110	92	89	88	88
3	慢速	480	300	240	230	220	220	220

表 7-9 测量时间

7.4 性能测试

7.4.1 工作条件

各项试验应在(参见 <u>1.7 安全要求</u>)参比工作条件下进行。本测试只列入仪器主要部分指标的测试。其它部分未列入如变压器参数的测试等,用户可根据本手册所列指标在规定条件下进行测试。性能测试应在第 1 章规定预热条件下工作。

7.4.2 试验仪器和设备

序号	仪器设	备名称	技术要求
1		100pF	
	仁) 优	1000pF	
		10000pF	0.02%
l	标准电容器	10nF	损耗 D 已知
		0.1uF	
		1uF	
	交流 标准电阻器	10Ω	
		100Ω	
2		1kΩ	0.02%
		10kΩ	
		100kΩ	
3		0.1Ω	
		1Ω	
	直流 标准电阻器	10Ω	0.02%
		100Ω	0.02/0
		1kΩ	
		10kΩ	

第7章性能与测试

		100kΩ	
4	标准电感器	100 µ H	
		1mH	0.02%
		10mH	0.0276
		100mH	
5	频率计	(0~1000) MHz	
6	数字万用表	0.5%	
7	绝缘电阻表	500V 10 级	
8	耐压泄漏测试仪	0.25kW	
	则3 / L 7 (巴 4)图 4 (火) (工) (X	(0∼500) V	

表 7-10 试验仪器和设备

7.4.3 功能检查

仪器各功能键、显示器、端子等应能正常工作,各项功能正确无误。

7.4.4 测试信号电平

使用高频毫伏表和检波探头,检波探头连接到测量仪的 H_{CUR} 端,测试探头的地线连接到接地端。改变电平为: 10mV、20mV、100mV、200mV、1V、2V,读数应符合本章关于测试信号电平要求。

7.4.5 频率

将频率计接地端与仪器的接地端相连。频率计测试端与电容仪测试端 H_{CUR}端相连。改变频率为: 20Hz、100Hz、1kHz、10kHz、100kHz、200kHz,300kHz,1MHz,8.5MHz 频率计的读数应符合本章关于测试信号频率的要求。

7.4.6 测量准确度

测量仪测量参数较多,基本测量参数为R、L、C、D,其余参数均可由上述 参数到处,因此准确度测量主要对R、L、C、D进行测量。

7.4.7 电容量 C、损耗 D 准确度

■ 功能 Cp-D

■ 测试频率 100Hz 1kHz 10kHz 100kHz (分别测试)

■ 电平 1V

■ 量程 AUTO

■ 偏置 **0V**

■ 速度 慢

测试前应进行短路和开路清零。接入标准电容器 100pF、1000pF、10nF、0.1uF、1uF,改变频率,仪器读数与标准值之间的误差电容量 C 应在本章关于 C 准确度规定的允许误差范围内,损耗 D 应在本章关于 D 准确度规定的允许误差范围内。

7.4.8 电感量 L 准确度

测试条件:

■ 功能 Ls-Q

■ 测试频率 100Hz 1kHz 分别测试

■ 电平 1V

■ 量程 AUTO

■ 偏置 **OV**

■ 速度 慢

测试前应进行短路和开路清零。 接入标准电感器 100 μ H、1mH、10mH、100mH, 改变频率,仪器读数与标准值之间的误差应在本章关于 L 准确度规定的允许误差范围内。

7.4.9 阻抗 Z 准确度

测试条件:

■ 功能 **Z**- θ

■ 测试频率 100Hz 1kHz 10kHz 100kHz (分别测试)

■ 电平 1V

■ 量程 AUTO

■ 偏置 **0V**

■ 速度 慢

测试前应进行短路和开路清零。接入交流标准电阻器 10Ω 、 100Ω 、 $1k\Omega$ 、 $10k\Omega$ 、 $100k\Omega$,改变频率,仪器读数与标准值之间的误差应在本章关于|Z|准确度规定的允许误差范围内。

7.4.10 直流电阻 DCR 准确度

测试条件:

■ 功能 DCR

■ 测试频率 -----

■ 电平 -----

■ 量程 AUTO

■ 偏置 -----

■ 速度 慢

测试前应进行短路清零。接入直流标准电阻器 0.1Ω 、 1Ω 、 10Ω 、 100Ω 、 $1k\Omega$ 、 $10k\Omega$ 、 $100k\Omega$,仪器读数与标准值之间的误差应在本章关于 DCR 准确度规定的允许误差范围内

第8章 命令参考

8.1 SCPI 子系统命令

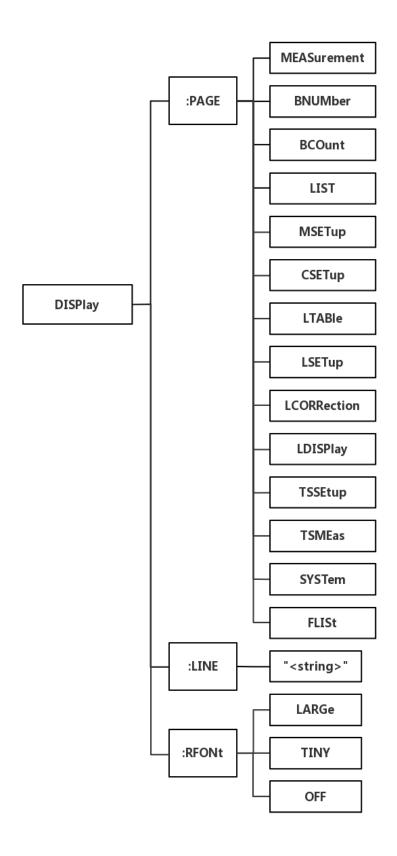
● DISPlay	● ORESister	●TRIGger	●CORRection
●FREQuency	●BIAS	●INITiate	● COMParator
●VOLTage	●FUNCtion	●FETCh?	■Mass MEMory
●CURRent	●LIST	●ABORT	●TEST

可登录公司网站 <u>www.tonghui.com.cn</u> 查询

SCPI(可编程仪器的标准命令)是一种基于 ASCII 的仪器命令语言,供测试和测量仪器使用。SCPI 命令以分层结构(也称为树系统)为基础。在该系统中,相关命令被归在一个共用的节点或根下,这样就形成了子系统。

按照命令语法,大多数命令(和某些参数)以大小写字母混合的方式表示。大写字母表示命令的缩写。对于较短的程序行,可以发送缩写格式的命令。如果要获得较好的程序可读性,可以发送长格式的命令。

注:为了避免对指令缩写产生误解,在指令描述上尽量避免过多的缩写可选 择性,大部分指令描述都会采用缩写形式直接描述。


注:命令语法约定:

- 大括号 ({ }) 中包含了给定命令字符串的参数选项。大括号不随命令字符串一起发送。
- 竖条 (|) 隔开给定命令字符串的多个参数选择。第二个示例中的尖括号 (<>) 表示必须为括号内的参数指定一个值。一些语法元素(例如节点和参数)包含在方括号 ([]) 内。这表示该元素可选且可以省略。尖括号不随命令字符串一起发送。如果没有为可选参数指定值,则仪器将选择默认值。
- NR1:整数,例如: 123。
- NR2: 定点数,例如: 12.3。
- NR3: 浮点数,例如: 12.3E+5。
- NL: 回车符,整数 10。
- ^END: IEEE-488 总线的 EOI (结束) 信号。

8.1.1 DISPlay 子系统

DISPlay 子系统命令集主要用于设定仪器的显示页面和通过字符? 反查询当前的页面。

命令树:

8.1.1.1 DISPlay:PAGE

描述: 设定仪器的显示页面,字符?可以查询当前的页面。

命令语法: DISPlay:PAGE <page name>

查询语法: DISPlay:PAGE?

查询返回: <page name><NL^END>

参数<page name>:

MEASurement 设定显示页面至:元件测量显示

BNUMber 设定显示页面至: 档号显示

BCOunt 设定显示页面至: 档计数显示

LIST 设定显示页面至:列表扫描显示

MSETup 设定显示页面至:测量设置

CSETup 设定显示页面至:用户校正功能

LTABle 设定显示页面至:极限列表设置

LSETup 设定显示页面至:列表扫描设置

LCORR 设定显示页面至:列表用户校正

LDISP 设定显示页面至:列表显示设置

TSSEtup 设定显示页面至: 曲线扫描设置

TSLImit 设定显示页面至: 曲线极限设置

TSMEas 设定显示页面至: 曲线扫描显示

SYSTem 设定显示页面至:系统设置页面

FLISt 设定显示页面至:文件列表

例:

WrtCmd("DISP:PAGE MEAS");

设定显示页面至元件测量显示

WrtCmd("DISP:PAGE?")

返回 MEAS, 表明当前显示页面元件测量显示

8.1.1.2 DISPlay:LINE

描述:用于设定仪器当前的测量主题,可以是最长 16 个字符的子串,字符?可以查询当前的测量主题。该字符串可以在保存的时候作为文件名保存。

命令语法: DISPlay:LINE"<string>"

查询语法: DISPlay:LINE?

查询返回: <string><NL^END>

参数<string>:

ASCII 字符串 (最长 16 个)

例:

WrtCmd("DISP:LINE "Resistor meas"");

设定仪器当前的测量主题为 Resistor meas

WrtCmd("DISP:LINE?");

返回 Resistor meas, 表明当前的测量主题为 Resistor meas

8.1.1.3 DISPlay:ResultFONt

描述:设定仪器当前的测量结果字体。字符?可以查询当前的测量结果字体。

命令语法: DISPlay:RFONt

查询语法: DISPlay:RFONt?

查询返回: <NL^END>

参数:

LARGe: 用大字体显示测量结果,每次约12ms。

TINY: 用小字体显示测量结果,每次约5ms。

OFF: 不显示测量结果,但是可以从总线上读取。

例:

WrtCmd("DISP:RFON LARG");

设定仪器当前的测量结果字体为大字体

WrtCmd("DISP:RFON?");

返回 LARG,表明当前的测量结果字体为大字体

8.1.2 FREQuency 子系统

描述: 用于设定仪器的测量频率,字符?可以查询当前的测量频率。

命令语法: FREQuency <value> / MIN / MAX

查询语法: FREQuency?

查询返回: <NR3><NL^END>

参数:

<value>: NR1,NR2,NR3 数据格式加 Hz、kHz 或 MHz 后缀的参数。

MIN:设定测量频率为最小值 20Hz

MAX:设定测量频率为最大值(TH2838/TH2838H 最大为 2MHz, TH2838A

为 1MHz, TH2839A 为 5MHz, TH2839 为 10MHz)

例:

WrtCmd("FREQ 1KHZ");

设定测量频率为 1000Hz

WrtCmd("FREQ?");

返回 1KHZ, 表明当前的测量频率为 1000Hz

8.1.3 VOLTage 子系统

描述:用于设定仪器的测量电平电压,字符?可以查询当前的测量电平电压。

命令语法: VOLTage <value> / MIN / MAX

查询语法: VOLTage?

查询返回: <NR3><NL^END>

参数:

<value>: NR1,NR2,NR3 数据格式加 V 后缀的参数。

MIN:设定测量电平电压为5mV

MAX:设定测量电平电压为2V

例:

WrtCmd("VOLT 1V");

设定测量电平电压为 1V

WrtCmd("VOLT?");

返回 1V, 表明当前的测量电平电压为 1V

8.1.4 CURRent 子系统

描述:用于设定仪器的测量电平电流,字符?可以查询当前的测量电平电流。

命令语法: CURRent <value> / MIN / MAX

查询语法: CURRent?

查询返回: <NR3><NL^END>

参数:

<value>: NR1,NR2,NR3 据格式加 MA 后缀的参数。

MIN:设定测量电平电流为50µA

MAX:设定测量电平电流为20mA

例:

WrtCmd("CURR 1MA");

设定测量电平电流为 1mA

WrtCmd("CURR?");

返回 1MA,表明当前的测量电平电流为 1mA

8.1.5 AMPLitude 子系统

描述:用于设定仪器的自动电平控制(ALC)开关,字符?可以查询当前的自动电平控制(ALC)开关状态。

命令语法: AMPLitude:ALC ON / OFF / 1 / 0

查询语法: AMPLitude:ALC?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价

字符 0 与 OFF 等价

例:

WrtCmd("AMPL:ALC 0");

设定仪器的自动电平控制功能关闭

WrtCmd("AMPL:ALC?");

返回 0, 表明当前的自动电平控制功能关闭

8.1.6 OUTPut 子系统

描述:用于设定仪器的 DC 50mA/5V 偏流源直流隔离功能打开或关闭,字符?可以查询当前的偏流源直流隔离功能开关。

命令语法: OUTPut:DC:ISOLation ON / OFF / 1 / 0

查询语法: OUTPut:DC:ISOLation?

查询返回: <NR1> <NL^END>

参数:

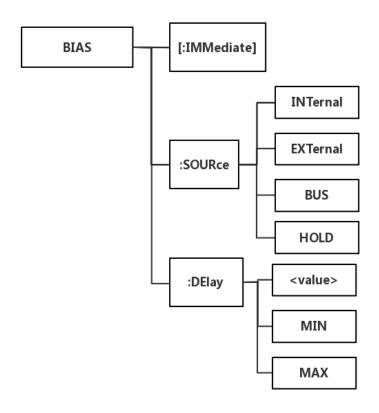
字符1与 ON 等价

字符 0 与 OFF 等价

例:

WrtCmd("OUTP:DC:ISOL 0");

设定仪器的偏流源直流隔离功能关闭


WrtCmd("OUTP:DC:ISOL?");

返回0,表明当前的偏流源直流隔离功能关闭

8.1.7 BIAS 子系统

BIAS 子系统命令集主要用于设定仪器的内偏置电压,偏置开关。

命令树:

8.1.7.1 BIAS:STATe

描述: 用于设定仪器的偏置开关,字符?可以查询当前的偏置开关。

命令语法: BIAS:STATe ON / OFF / 1 / 0

查询语法: BIAS:STATe?

查询返回: <NR1><NL^END>

参数:

字符1与 ON 等价

字符 0 与 OFF 等价

例:

WrtCmd("BIAS:STAT 0");

设定仪器的偏置功能关闭

WrtCmd("BIAS:STAT?");

返回 0, 表明当前的隔离功能关闭

8.1.7.2 BIAS:VOLTage

描述:设定仪器的内偏置电压,字符?可以查询当前的偏置电压。

命令语法: BIAS: VOLTage < value> / MIN / MAX

查询语法: BIAS: VOLTage?

查询返回: <NR3><NL^END>

参数:

<value>: NR1,NR2,NR3 据格式。

MIN: 设定测量偏置电压为-10V

MAX: 设定测量偏置电压为 10V(TH2838H 为 40V)

例:

WrtCmd("BIAS:VOLT MIN");

设定仪器的直流偏置电压为-10V

WrtCmd("BIAS:VOLT?");

返回 1,表明当前的测量直流偏置电压为 1V

8.1.7.3 BIAS:CURRent

描述: 设定仪器的偏置电流,字符?可以查询当前的偏置电流。

命令语法: BIAS: CURRent <value> / MIN / MAX

查询语法: BIAS: CURRent?

查询返回: <NR3><NL^END>

参数:

<value>: NR1,NR2,NR3 据格式。

MIN:设定测量偏置电流为-100mA

MAX:设定测量偏置电流为 100mA

例:

WrtCmd("BIAS:CURR MIN");

设定仪器的直流偏置电流为-100mA

WrtCmd("BIAS:CURR? ");

返回 0,表明当前的直流偏置电流为 0A

8.1.7.4 BIAS:POLarity

描述:设定仪器的偏置电流的信号极性。

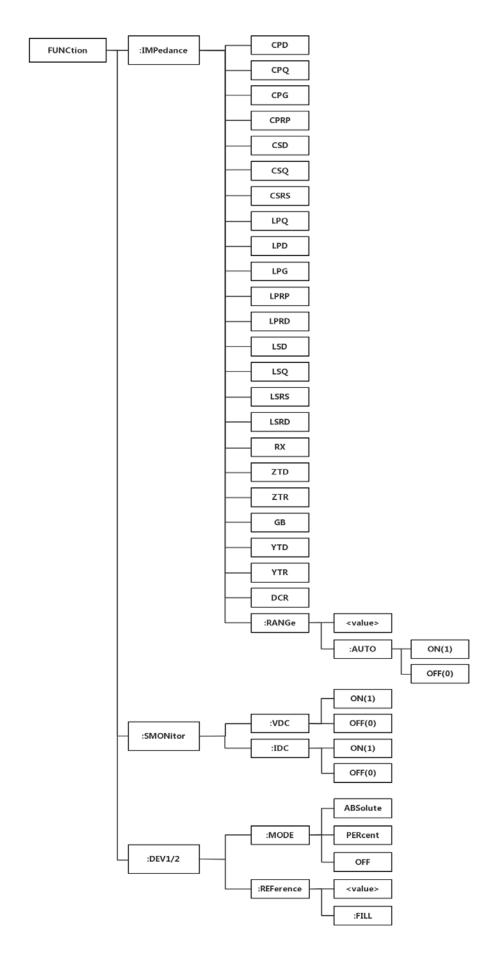
命令语法: BIAS:POLarity:AUTO ON / OFF / 1 / 0

参数:

字符1与 ON 等价

字符 0 与 OFF 等价,相当于 FIX

例:


WrtCmd("BIAS:POL:AUTO 1");

设定仪器的直流偏置极性为 AUTO。

8.1.8 FUNCtion 子系统

FUNCtion 子系统命令集主要用于设定测量"功能",量程,直流电流电压监视开关,和偏差显示的模式选择、标称设定等。

命令树:

8.1.8.1 FUNCtion: IMPedance

描述:设定仪器的"功能"参数,字符?可以查询当前的"功能"参数。

命令语法: FUNCtion:IMPedance <function>

查询语法: FUNCtion:IMPedance?

查询返回: <function><NL^END>

参数<function>:

CPD 设定"功能"为 Cp-D **LPRP** 设定"功能"为 Lp-Rp CPQ 设定"功能"为 Cp-Q LSD 设定"功能"为 Ls-D CPG 设定"功能"为 Cp-G LSQ 设定"功能"为 Ls-Q **CPRP** 设定"功能"为 Cp-Rp **LSRS** 设定"功能"为 Ls-Rs

■ CSD 设定"功能"为 Cs-D

■ RX 设定"功能"为 R-X

■ CSQ 设定"功能"为 Cs-Q

■ ZTD 设定"功能"为 Z- θ°

■ CSRS 设定"功能"为 Cs-Rs

■ ZTR 设定"功能"为 Z- θ r

■ LPQ 设定"功能"为 Lp-Q

■ GB 设定"功能"为 G-B

■ LPD 设定"功能"为 Lp-D

■ YTD 设定"功能"为 Y- θ°

■ LPG 设定"功能"为 Lp-G

■ YTR 设定"功能"为 Y- θ r

■ LPRD 设定"功能"为 Lp-Rd

■ RPQ 设定"功能"为 Rp-Q

■ LSRD 设定"功能"为 Ls-Rd

■ RSQ 设定"功能"为 Rs-Q

■ LSZ 设定"功能"为 Ls-Z

■ LPZ 设定"功能"为 Lp-Z

■ DCR 设定"功能"为 DCR

例:

WrtCmd("FUNC:IMP RX");

用于设定仪器的"功能"参数为 R-X。

WrtCmd("FUNC:IMP? ");

返回 R-X,表明当前仪器的"功能"参数为 R-X。

8.1.8.2 FUNCtion:IMPedance:RANGe

描述: 设定仪器的量程,字符?可以查询当前的量程参数。

命令语法: FUNCtion:IMPedance:RANGe <value>

查询语法: FUNCtion:IMPedance:RANGe?

查询返回: <value><NL^END>

参数<value>:

被测量元件的阻抗大小,设置时可以是 NR1,NR2,NR3 数据格式加 OHM,KOHM 后缀的参数。

查询返回时,可以是:

0.1 1 10 20 50 100

200 500 1000 2000 5000

10000 20000 50000 100000

注: TH2838H 在测试电压高于 2V 时总共 15 个量程, TH2838 和 TH2838A 为不包括 0.1 的其它 14 个量程, 频率不同也会有不同的量程选择。

例:

WrtCmd("FUNC:IMP:RANG 1KOHM");

设定仪器的量程为 $1k\Omega$ 。

WrtCmd("FUNC:IMP:RANG?");

返回 1,表明当前仪器的量程为 1Ω。

8.1.8.3 FUNCtion:IMPedance:RANGe:AUTO

描述:设定仪器的量程自动选择方式,字符?可以查询当前的量程状态。

命令语法: FUNCtion:IMPedance:RANGe:AUTO ON / OFF / 1 / 0

查询语法: FUNCtion:IMPedance:RANGe:AUTO?

查询返回: <NR1><NL^END>

参数:

字符1与 ON 等价

字符 0 与 OFF 等价, 相当于 FIX

例:

WrtCmd("FUNC:IMP:RANG:AUTO ON");

设定仪器的量程为自动。

WrtCmd("FUNC:IMP:RANG:AUTO?");

返回1,表明当前的量程状态为自动。

8.1.8.4 FUNCtion: DCResistance::RANGe

描述: 设定仪器的量程,字符?可以查询当前的量程参数。

命令语法: FUNCtion:DCResistance:RANGe <value>

查询语法: FUNCtion:DCResistance:RANGe?

查询返回: <value><NL^END>

参数<value>:

被测量元件的阻抗大小,设置时可以是 NR1,NR2,NR3 数据格式加 OHM,KOHM 后缀的参数。

查询返回时,可以是:

10 20 50 100

200 500 1000 2000 5000

10000 20000 50000 100000

例:

WrtCmd("FUNC:DCR:RANG 1KOHM");

设定仪器的量程为 $1k\Omega$ 。

WrtCmd("FUNC:DCR:RANG?");

返回 1,表明当前仪器的量程为 1Ω。

8.1.8.5 FUNCtion:DCResistance:RANGe:AUTO

描述: 设定仪器的量程自动选择方式,字符?可以查询当前的量程状态。

命令语法: FUNCtion:DCResistance:RANGe:AUTO ON / OFF / 1 / 0

查询语法: FUNCtion:DCResistance:RANGe:AUTO?

查询返回: <NR1><NL^END>

参数:

字符1与 ON 等价

字符 0 与 OFF 等价, 相当于 FIX

例:

WrtCmd("FUNC:DCR:RANG:AUTO ON");

设定仪器的量程为自动。

WrtCmd("FUNC:DCR:RANG:AUTO?");

返回1,表明当前的量程状态为自动。

8.1.8.6 FUNCtion:Source MONitor:VDC

描述: 设定仪器的直流电压监视开关,字符?可以查询当前的直流电压监视开关状态。

命令语法:

FUNCtion:SMONitor:VDC ON / OFF / 1 / 0

查询语法: FUNCtion:SMONitor:VDC?

查询返回: <NR1><NL^END>

参数:

字符1与 ON 等价

字符 0 与 OFF 等价

例:

WrtCmd("FUNC:SMON:VDC ON");

用于设定仪器的直流电压监视开关"开"。

WrtCmd("FUNC:SMON:VDC?");

返回 1, 表明当前直流电压监视开关"开"。

8.1.8.7 FUNCtion:Source MONitor:IDC

描述:设定仪器的直流电流监视开关,字符?可以查询当前的直流电流监视开关状态。

命令语法: FUNCtion:SMONitor:IDC ON / OFF / 1 / 0

查询语法: FUNCtion:SMONitor:IDC?

查询返回: <NR1><NL^END>

参数:

字符1与 ON 等价

字符 0 与 OFF 等价

例:

WrtCmd("FUNC:SMON:IDC ON");

设定仪器的直流电流监视开关"开"。

WrtCmd("FUNC:SMON:IDC?");

返回 1, 表明当前直流电流监视开关"开"。

8.1.8.8 FUNCtion: DEV<n>:MODE

描述:设定仪器的偏差测量模式,字符?可以查询当前的偏差测量模式状态。

命令语法: FUNCtion:DEV<n>:MODE ABSolute / PERCent / OFF

查询语法: FUNCtion:DEV<n>:MODE?

查询返回: ABS / PERC / OFF<NL^END>

参数:

ABSolute 绝对值偏差显示

PERCent 百分比偏差显示

OFF 实测值直接显示

<n>: 字符 1 表明设定主参数的偏差模式,字符 2 表明设定副参数的偏差模式。

例:

WrtCmd("FUNC:DEV1:MODE ABS");

设定主参数的偏差模式 ABS。

WrtCmd("FUNC:DEV2:MODE?");

返回 ABS,表明当前副参数的偏差模式为 ABS。

8.1.8.9 FUNCtion:DEV<n>:REFerence

描述: 设定仪器的偏差标称值,字符?可以查询当前的偏差标称值。

命令语法: FUNCtion:DEV<n>:REFerence<value>

查询语法: FUNCtion:DEV<n>:REFerence?

查询返回: <NR3><NL^END>

参数:

<value>可以是 NR1,NR2,NR3 数据格式。

<n>: 字符 1 表明设定主参数的偏差标称值,字符 2 表明设定副参数的偏差标称值。

例:

WrtCmd("FUNC:DEV1:REF 10");

设定主参数的偏差标称值 10

WrtCmd("FUNC:DEV2:REF?");

返回 10, 表明当前副参数的偏差标称值 10

8.1.8.10 FUNCtion:DEV<n>:REFerence:FILL

描述:设定仪器的偏差标称值,它控制仪器测量一次,然后把主副参数结果复制成偏差标称值。

命令语法: FUNCtion:DEV<n>:REFerence:FILL

参数:

<n>: 字符 1 或字符 2 都能设定主参数和副参数的偏差标称值

例:

WrtCmd("FUNC:DEV1:REF:FILL");

设定主、副参数的偏差标称值

8.1.8.11 FUNCtion:StepDELay

描述:设置仪器的步进延时时间,字符?可以查询当前的步进延时时间参数。

命令语法: StepDELay <value> / MIN / MAX

查询语法: FUNC:SDEL?

查询返回: <NR3><NL^END>

参数:

<value>: NR1,NR2,NR3 数据格式,以 1mS 为分辨率的 0—60 秒时间。

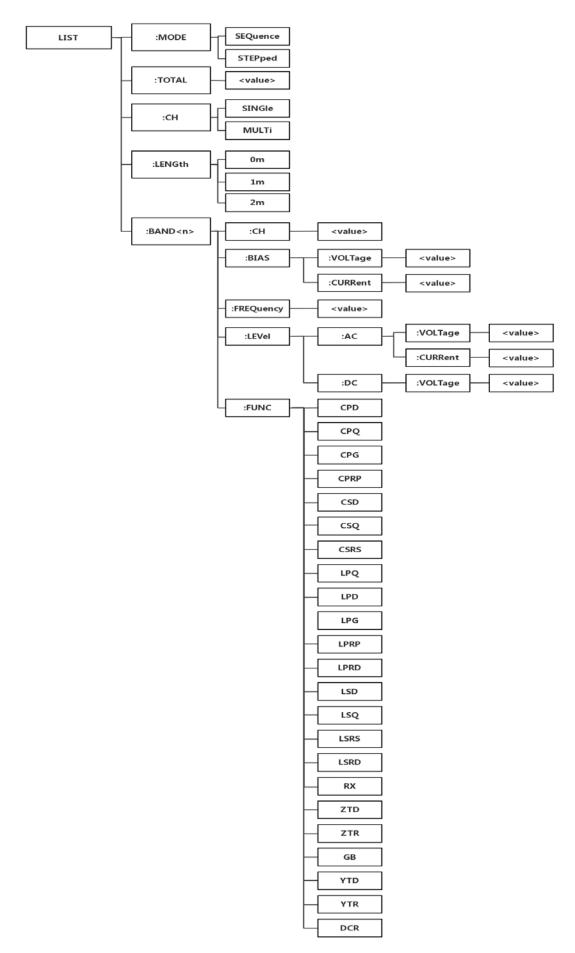
MIN:设定延时参数为0秒

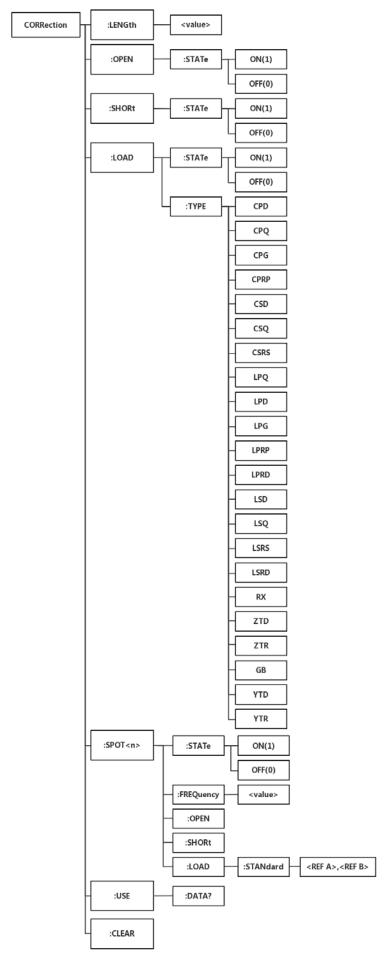
MAX:设定延时参数为60秒

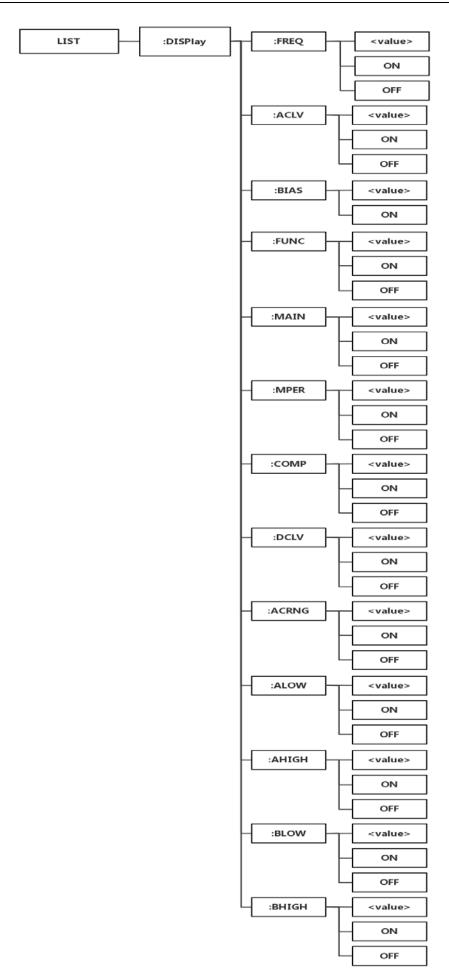
例:

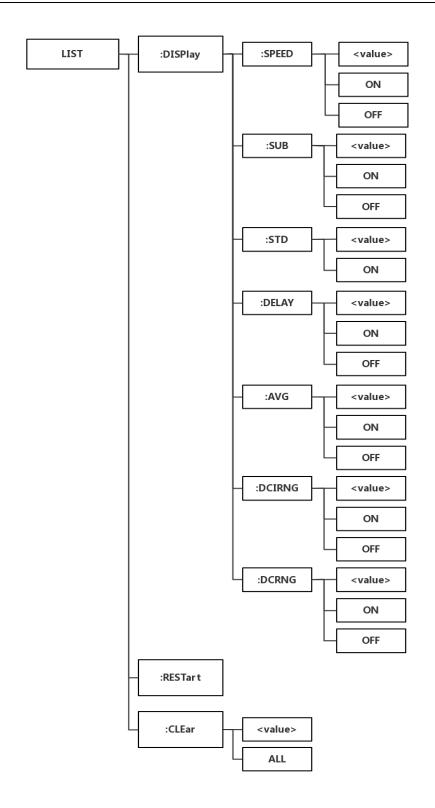
WrtCmd("FUNC:SDEL 5S");

设定步进延时参数为5秒


WrtCmd("FUNC:SDEL? ");


返回5,表明当前的步进延时参数为5秒


8.1.9 LIST 子系统


LIST 子系统命令集主要用于设定列表扫描测量功能,扫描点的设定,扫描模式的设定,扫描比较极限的设定。

命令树如下:

8.1.9.1 LIST:MODE

描述:设定仪器列表扫描模式。可以查询当前仪器列表扫描模式。

命令语法: LIST:MODE SEQuence / STEPped

查询语法: LIST:MODE?

查询返回: SEQ/STEP <NL^END>

参数:

SEQuence 连续模式

STEPped 单步模式

例:

WrtCmd("LIST:MODE SEQ")

设置仪器列表扫描模式为连续模式

WrtCmd("LIST:MODE?")

返回 SEQ,表明当前仪器列表扫描模式为连续模式

8.1.9.2 LIST:TOTAL

描述:设定仪器列表扫描总点数。可以查询当前已设定的总点数。

命令语法: LIST:TOTAL <value>

查询语法: LIST:TOTAL?

查询返回: <NR1><NL^END>

参数<value>:

NR1 数据格式,范围 1-10(包含 1 和 10)。

例:

WrtCmd("LIST:TOTAL 10")

设定扫描总点数为10

WrtCmd("LIST:TOTAL?")

返回 10, 表明当前已设定的总点数为 10

8.1.9.3 LIST:CH:MODE

描述: 设定仪器列表扫描通道模式。可以查询当前设定的通道模式。

命令语法: LIST:CH:MODE SINGle / MULTi

查询语法: LIST:CH:MODE?

查询返回: SING / MULT < NL^END>

参数:

SINGle 单通道模式

MULTi 多通道模式

例:

WrtCmd("LIST: CH:MODE MULT")

设定仪器列表扫描通道模式为多通道模式

WrtCmd("LIST: CH:MODE?")

返回 MULT, 表明当前设定的通道模式为多通道模式

8.1.9.4 LIST:LENGth

描述:设定仪器列表扫描使用的电缆长度。可以查询当前所使用的电缆长度。

命令语法: LIST:LENGth 0m / 1m / 2m

查询语法: LIST:LENGth?

查询返回: 0m / 1m / 2m <NL^END>

例:

WrtCmd("LIST:LENGth 1m")

设定仪器列表扫描使用的电缆长度为1米

WrtCmd("LIST:LENGth?")

返回 1,表明设定当前所使用的电缆长度为 1米

8.1.9.5 LIST:BAND<n>:CH

描述: 设定仪器列表扫描设置表格中第 \mathbf{n} 点所用的通道。可以查询当前表格中第 \mathbf{n} 点所用的通道。

命令语法: LIST:BAND<n>:CH <value>

查询语法: LIST:BAND<n>:CH?

查询返回: <NR1><NL^END>

参数:

<n>: 第 n 行扫描点,范围 1~10(NR1 格式)

<value>: 为 NR1 数据格式, 范围 1~8。

例:

WrtCmd("LIST:BAND3:CH 2")

设定仪器列表扫描设置表格中第3点所用的通道为通道2

WrtCmd("LIST:BAND3:CH?")

返回 2, 表明当前表格中第 3点所用的通道为通道 2

8.1.9.6 LIST:BAND<n>:BIAS:VOLTage

描述: 设定第 n 点的偏置电压。可以查询第 n 点的偏置电压。

命令语法: LIST:BAND<n>:BIAS:VOLTage <value>

查询语法: LIST:BAND<n>:BIAS:VOLTage?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式

例:

WrtCmd("LIST:BAND3:BIAS:VOLTage 2")

设定第3点的偏置电压为2V

WrtCmd("LIST:BAND3:BIAS:VOLTage?")

返回 2, 表明当前第 3点的偏置电压为 2V

8.1.9.7 LIST:BAND<n>:BIAS:CURRent

描述: 设定第 n 点的偏置电流。可以查询第 n 点的偏置电流。

命令语法: LIST:BAND<n>:BIAS:CURRent <value>

查询语法: LIST:BAND<n>:BIAS:CURRent?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式

例:

WrtCmd("LIST:BAND3:BIAS:CURRent 0.05")

设定第3点的偏置电流为0.05A

WrtCmd("LIST:BAND3:BIAS:CURRent?")

返回 0.05, 表明当前第 3 点的偏置电流为 0.05A

8.1.9.8 LIST:BAND<n>:FREQuency

描述:设定第 n 点的测试频率。可以查询第 n 点的测试频率。

命令语法: LIST:BAND<n>:FREQuency <value>

查询语法: LIST:BAND<n>:FREQuency?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式,后缀可加 k 或 M,也可不加。

例:

WrtCmd("LIST:BAND3:FREQuency 10k")

设定第3点的测试频率为10kHz

WrtCmd("LIST:BAND3:FREQuency?")

返回 10, 表明当前第 3 点的测试频率为 10Hz

8.1.9.9 LIST:BAND<n>:LEVel:AC:VOLTage

描述:设定第 n 点的 AC 电压。可以查询第 n 点的 AC 电压。

命令语法: LIST:BAND<n>:LEVel:AC:VOLTage <value>

查询语法: LIST:BAND<n>:LEVel:AC:VOLTage?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式

例:

WrtCmd("LIST:BAND3:LEVel:AC:VOLTage 1.5")

设定第3点的AC电压为1.5V

WrtCmd("LIST:BAND3:LEVel:AC:VOLTage?")

返回 1.5, 表明当前第 3点的 AC 电压为 1.5V

8.1.9.10 LIST:BAND<n>:LEVel:AC:CURRent

描述: 设定第 n 点的 AC 电流。可以查询第 n 点的 AC 电流。

命令语法: LIST:BAND<n>:LEVel:AC:CURRent <value>

查询语法: LIST:BAND<n>:LEVel:AC:CURRent?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式

例:

WrtCmd("LIST:BAND3:LEVel:AC:CURRent 0.1")

设定第3点的AC电流为0.1A

WrtCmd("LIST:BAND3:LEVel:AC:CURRent?")

返回 0.1, 表明当前第 3 点的 AC 电流为 0.1A

8.1.9.11 LIST:BAND<n>:LEVel:DC:VOLTage

描述:设定第 n 点的 DC 电压。可以查询第 n 点的 DC 电压。

命令语法: LIST:BAND<n>:LEVel:DC:VOLTage <value>

查询语法: LIST:BAND<n>:LEVel:DC:VOLTage?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式

例:

WrtCmd("LIST:BAND3:LEVel:DC:VOLTage 1")

设定第3点的DC电压为1V

WrtCmd("LIST:BAND3:LEVel:DC:VOLTage?")

返回 1, 表明当前第 n 点的 DC 电压为 1V

8.1.9.12 LIST:BAND<n>:FUNC

描述:设定第 n 点的测试功能。可以查询第 n 点的测试功能。

命令语法: LIST:BAND<n>:FUNC <function>

查询语法: LIST:BAND<n>:FUNC?

查询返回: <function><NL^END>

参数<function>:

CPD 设定"功能"为 Cp-D LPRP 设定"功能"为 Lp-Rp

CPQ	设定"功能"为 Cp-Q	LSD	设定"功能"为 Ls-D
CPG	设定"功能"为 Cp-G	LSQ	设定"功能"为 Ls-Q
CPRP	设定"功能"为 Cp-Rp	LSRS	设定"功能"为 Ls-Rs
CSD	设定"功能"为 Cs-D	RX	设定"功能"为 R-X
CSQ	设定"功能"为 Cs-Q	ZTD	设定"功能"为 Ζ-θ°
CSRS	设定"功能"为 Cs-Rs	ZTR	设定"功能"为 Ζ-θr
LPQ	设定"功能"为 Lp-Q	GB	设定"功能"为 G-B
LPD	设定"功能"为 Lp-D	YTD	设定"功能"为 Υ-θ°
LPG	设定"功能"为 Lp-G	YTR	设定"功能"为 Υ-θr
LPRD	设定"功能"为 Lp-Rd	RPQ	设定"功能"为 Rp-Q
LSRD	设定"功能"为 Ls-Rd	RSQ	设定"功能"为 Rs-Q
LSZ	设定"功能"为 Ls-Z	LPZ	设定"功能"为 Lp-Z
DCR	设定"功能"为 DCR		

例:

WrtCmd("LIST:BAND2:FUNC LSQ");

设定列表扫描第 2 点"功能"参数为 Ls-Q。

WrtCmd("LIST:BAND2:FUNC?");

返回 Ls-Q, 表明当前列表扫描第 2 点"功能"参数为 Ls-Q。

8.1.9.13 LIST:BAND<n>:LIMit:MODE

描述: 设定第 n 点的极限模式。可以查询第 n 点的极限模式。

命令语法: LIST:BAND<n>:LIMit:MODE ABSolute / PERCent

查询语法: LIST:BAND<n>:LIMit:MODE?

查询返回: ABS / PERC <NL^END>

参数:

ABSolute 绝对值偏差

PERCent 百分比偏差

例:

WrtCmd("LIST:BAND3:LIMit:MODE ABS")

设定第3点的极限模式为绝对值偏差

WrtCmd("LIST:BAND3:LIMit:MODE?")

返回 ABS,表明当前第3点的极限模式为绝对值偏差

8.1.9.14 LIST:BAND<n>:LIMit:A:LOW

描述: 设定第 n 点 A 的下限。可以查询第 n 点 A 的下限。

命令语法: LIST:BAND<n>:LIMit:A:LOW <value>

查询语法: LIST:BAND<n>:LIMit:A:LOW?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式

例:

WrtCmd("LIST:BAND3:LIMit:A:LOW 2.5")

设定第3点著参数A的下限为2.5Ω(单位依据功能选择,比如功能R-X)

WrtCmd("LIST:BAND3:LIMit:A:LOW?")

返回 2.5,表明当前第 3 点著参数 A 的下限为 2.5 Ω (单位依据功能选择,比如功能 R-X)

8.1.9.15 LIST:BAND<n>:LIMit:A:HIGH

描述: 设定第 n 点 A 的上限。可以查询第 n 点 A 的上限。

命令语法: LIST:BAND<n>:LIMit:A:HIGH <value>

查询语法: LIST:BAND<n>:LIMit:A:HIGH?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式

例:

WrtCmd("LIST:BAND3:LIMit:A:HIGH 5")

设定第 3 点著参数 A 的上限为 5Ω (单位依据功能选择,比如功能 R-X)

WrtCmd("LIST:BAND3:LIMit:A:HIGH?")

返回 5,表明当前第 3 点著参数 A 的上限为 5Ω (单位依据功能选择,比如功能 R-X)

8.1.9.16 LIST:BAND<n>:LIMit:B:LOW

描述: 设定第 n 点 B 的下限。可以查询第 n 点 B 的下限。

命令语法: LIST:BAND<n>:LIMit:B:LOW <value>

查询语法: LIST:BAND<n>:LIMit:B:LOW?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式

例:

WrtCmd("LIST:BAND3:LIMit:B:LOW 1")

设定第 3 点副参数 B 的下限为 1Ω (单位依据功能选择,比如功能 Cp-Rp)

WrtCmd("LIST:BAND3:LIMit:B:LOW?")

返回 1,表明当前第 3点副参数 B的下限为 1Ω(同上)

8.1.9.17 LIST:BAND<n>:LIMit:B:HIGH

描述: 设定第 n 点 B 的上限。可以查询第 n 点 B 的上限。

命令语法: LIST:BAND<n>:LIMit:B:HIGH <value>

查询语法: LIST:BAND<n>:LIMit:B:HIGH?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式

例:

WrtCmd("LIST:BAND3:LIMit:B:HIGH 3")

设定第 3 点副参数 B 的上限为 3Ω (单位依据功能选择,比如功能 Cp-Rp)

WrtCmd("LIST:BAND3:LIMit:B:HIGH?")

返回 3,表明当前第 3点副参数 B的上限为 3Ω (同上)

8.1.9.18 LIST:BAND<n>:SPEED

描述: 设定第 n 点的测试速度。可以查询第 n 点的测试速度。

命令语法: LIST:BAND<n>:SPEED FAST / MEDium / SLOW

查询语法: LIST:BAND<n>:SPEED?

查询返回: FAST / MEDium / SLOW <NL^END>

参数:

FAST: 快速约 130 次/秒,。

MEDium: 中速 11 次/秒

SLOW: 慢速 4 次/秒

例:

WrtCmd("LIST:BAND3:SPEED MED")

设定第3点的测试速度为中速

WrtCmd("LIST:BAND3:SPEED?")

返回 MED, 表明当前第3点的测试速度为中速

8.1.9.19 LIST:BAND<n>:AVeraGe

描述:设定第 n 点的平均次数。可以查询第 n 点的平均次数。

命令语法: LIST:BAND<n>:AVeraGe <value>

查询语法: LIST:BAND3:AVG?

查询返回: <value><NL^END>

参数:

<value>: NR1 数据格式,范围 1~255。

例:

WrtCmd("LIST:BAND3:AVG 3")

设定第3点的平均次数为3次

WrtCmd("LIST:BAND3:AVG?")

返回3,表明当前第3点的平均次数为3次

8.1.9.20 LIST:BAND<n>:ALC

描述: 设定第 \mathbf{n} 点的自动电平控制开关。可以查询第 \mathbf{n} 点的自动电平控制开关状态。

命令语法: LIST:BAND<n>:ALC ON / OFF / 1 / 0

查询语法: LIST:BAND<n>:ALC?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价

字符 0 与 OFF 等价

例:

WrtCmd("LIST:BAND2:ALC 1")

设定第2点的自动电平控制为开启状态

WrtCmd("LIST:BAND2:ALC?")

返回 1,表明当前第 2点的自动电平控制为开启状态

8.1.9.21 LIST:BAND<n>:POL

描述: 设定第n点的偏置电流的信号极性。可以查询第n点偏置电流的信号极性状态。

命令语法: LIST:BAND<n>:POL AUTO / FIX / 1 / 0

查询语法: LIST:BAND<n>:POL?

查询返回: <NR1><NL^END>

参数:

字符 1 相当于 AUTO

字符 0 (相当于 FIX

例:

WrtCmd("LIST:BAND2:POL FIX")

设定第2点的偏置电流的信号极性固定

WrtCmd("LIST:BAND2:POL?")

返回 FIX, 表明当前第 2 点的偏置电流的信号极性固定

8.1.9.22 LIST:BAND<n>:RANGe:AC

描述: 设定第 n 点的 AC 量程。可以查询第 n 点的 AC 量程。

命令语法: LIST:BAND<n>:RANGe:AC AUTO / HOLD / <value>

查询语法: LIST:BAND<n>:RANGe:AC?

查询返回: <NR1> / <value><NL^END>

参数<value>:

1 10 20 50 100

200 500 1000 2000 5000

10000 20000 50000 100000

例

WrtCmd("LIST:BAND2:RANGe:AC AUTO")

设定第 2 点的 AC 量程为自动模式

WrtCmd("LIST:BAND2:RANGe:AC?")

返回 10, 表明当前第 2 点的 AC 量程为 10Ω

8.1.9.23 LIST:BAND<n>:RANGe:DC

描述:设定第 n 点的 DC 量程。可以查询第 n 点的 DC 量程。

命令语法: LIST:BAND<n>:RANGe:DC AUTO / HOLD / <value>

查询语法: LIST:BAND<n>:RANGe:DC?

查询返回: <NR1> / <value><NL^END>

参数<value>:

10 20 50 100

200 500 1000 2000 5000

10000 20000 50000 100000

例:

WrtCmd("LIST:BAND2:RANGe:DC AUTO")

设定第2点的 DC 量程为自动模式

WrtCmd("LIST:BAND2:RANGe:DC?")

返回 10,设定第 2点的 DC 量程为 10Ω

8.1.9.24 LIST:BAND<n>:RANGe:DCI

描述:设定第 n 点的 DCI 量程。可以查询第 n 点的 DCI 量程。

命令语法: LIST:BAND<n>:RANGe:DCI AUTO / HOLD / <value>

查询语法: LIST:BAND<n>:RANGe:DCI?

查询返回: <NR1> / <value><NL^END>

量程保持时<value><NL^END>

注:参数需要 DCI 隔离打开才能继续操作

参数<value>:

20uA 200uA 2mA 20mA 100mA

例如:

WrtCmd("LIST:BAND2:RANGe:DC 0.02")

设定第 2 点的 DCI 量程为 20mA

WrtCmd("LIST:BAND2:RANGe:DC?")

返回 0.02, 表明当前第 2 点的 DCI 量程为 20mA

8.1.9.25 LIST:BAND<n>:ISO

描述:设定第 n 点的 DCI 隔离控制开关。可以查询第 n 点的 DCI 隔离开关状态。

命令语法: LIST:BAND<n>:ISO ON / OFF / 1 / 0

查询语法: LIST:BAND<n>:ISO?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价

字符 0 与 OFF 等价

例:

WrtCmd("LIST:BAND2:ISO 1")

设定第2点的DCI隔离控制为开启状态

WrtCmd("LIST:BAND2:ISO?")

返回 1, 表明当前第 2点的 DCI 隔离控制为开启状态

8.1.9.26 LIST:BAND<n>:CORRection:OPEN

描述: 执行第 n 点的开路清零动作,清零完成后自动返回清零结果。

命令语法: LIST:BAND<n>:CORRection:OPEN

返回结果: <NR1><NL^END>

参数:

字符1表示开路清零成功

字符0表示开路清零失败

例:

WrtCmd("LIST:BAND2:CORRection:OPEN")

返回 1,表示执行第 2点的开路清零动作,且开路清零成功

8.1.9.27 LIST:BAND<n>:CORRection:OPEN:STATe

描述:设定第n点的开路校正功能。可以查询当前第n点的开路校正功能状态。

命令语法: LIST:BAND<n>:CORRection:OPEN:STATeON / OFF / 1 / 0

查询语法: LIST:BAND<n>:CORRection:OPEN:STATe?

查询返回: <NR1><NL^END>

参数:

字符1与 ON 等价

字符 0 与 OFF 等价

例:

WrtCmd("LIST:BAND2:CORRection:OPEN:STATe 0")

设定第2点的开路校正功能为关闭状态

WrtCmd("LIST:BAND2:CORRection:OPEN:STATe?")

返回 0, 表明当前第 2点的开路校正功能为关闭状态

8.1.9.28 LIST:BAND<n>:CORRection:SHORt

描述: 执行第 n 点的短路清零动作。清零完成后自动返回清零结果。

命令语法: LIST:BAND<n>:CORRection:SHORt

返回结果: <NR1><NL^END>

参数,

字符 1 表示短路清零成功

字符 0 表示短路清零失败

例:

WrtCmd("LIST:BAND2:CORRection:SHORt")

返回 1,表示执行第 2点的短路清零动作,且短路清零成功

8.1.9.29 LIST:BAND<n>:CORRection:SHORt:STATe

描述:设定第n点的短路校正功能。可以查询当前第n点的短路校正功能状态。

命令语法: LIST:BAND<n>:CORRection:SHORt:STATe ON / OFF / 1 / 0

查询语法: LIST:BAND<n>:CORRection:SHORt:STATe?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价

字符 0 与 OFF 等价

例:

WrtCmd("LIST:BAND2:CORRection:SHORt:STATe 0")

设定第2点的短路校正功能为关闭状态

WrtCmd("LIST:BAND2:CORRection:SHORt:STATe?")

返回 0, 表明当前第 2点的短路校正功能为关闭状态

8.1.9.30 LIST:BAND<n>:CORRection:LOAD

描述: 执行第 n 点的负载校正动作。

命令语法: LIST:BAND<n>:CORRection:LOAD

返回结果: <NR1><NL^END>

参数,

字符1表示负载校正成功

字符0表示负载校正失败

例:

WrtCmd("LIST:BAND2:CORRection:LOAD")

返回 1,表示执行第 2点的负载校正动作,且负载校正成功

8.1.9.31 LIST:BAND<n>:CORRection:LOAD:STATe

描述:设定第 \mathbf{n} 点的短路校正功能。可以查询当前第 \mathbf{n} 点的短路校正功能状态。

命令语法: LIST:BAND<n>:CORRection:LOAD:STATe ON / OFF / 1 / 0

查询语法: LIST:BAND<n>:CORRection:LOAD:STATe?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价

字符 0 与 OFF 等价

例:

WrtCmd("LIST:BAND2:CORRection:LOAD:STATe 0")

设定第2点的负载校正功能为关闭状态

WrtCmd("LIST:BAND2:CORRection:LOAD:STATe?")

返回 0,表明当前第 2点的负载校正功能为关闭状态

8.1.9.32 LIST:BAND<n>:CORRection:LOAD:REFerence:A

描述:设定第 n 点主参数 A 参与负载校正的参考值。可以查询第 n 点主参数 A 参与负载校正的参考值。

命令语法: LIST:BAND<n>:CORRection:LOAD:REFerence:A <value>

查询语法: LIST:BAND<n>:CORRection:LOAD:REFerence:A?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式

例:

WrtCmd("LIST:BAND3:CORRection:LOAD:REFerence:A 0.5")

设定第3点主参数 Cp 参与负载校正的参考值为500mF(单位依据功能选择, 比如功能 Cp-Q)

WrtCmd("LIST:BAND3:CORRection:LOAD:REFerence:A?")

返回 0.5, 表明当前第 3 点主参数 Cp 参与负载校正的参考值为 500mF(单位依据功能选择,比如功能 Cp-Q)

8.1.9.33 LIST:BAND<n>:CORRection:LOAD:REFerence:B

描述: 设定第 n 点副参数 B 参与负载校正的参考值。可以查询第 n 点主参数 B 参与负载校正的参考值。

命令语法: LIST:BAND<n>:CORRection:LOAD:REFerence:B <value>

查询语法: LIST:BAND<n>:CORRection:LOAD:REFerence:B?

查询返回: <NR3><NL^END>参数:

<value>: NR1, NR2 或 NR3 数据格式

例:

WrtCmd("LIST:BAND3:CORRection:LOAD:REFerence:B 2")

设定第 3 点副参数 Q 参与负载校正的参考值为 2 (单位依据功能选择,比如功能 Cp-Q)

WrtCmd("LIST:BAND3:CORRection:LOAD:REFerence:B?")

返回 2, 表明当前第 3点副参数 Q 参与负载校正的参考值为 2(单位依据功能选择,比如功能 Cp-Q)

8.1.9.34 LIST:BAND<n>:STD

描述: 设定第 n 点的标称值。可以查询第 n 点的标称值。

命令语法: LIST:BAND<n>:STD <value> / STEP1

查询语法: LIST:BAND<n>:STD?

查询返回: <value> / STEP1<NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式

STEP1: 为列表扫描第 1 点测得的结果作为此处的标称值

例:

WrtCmd("LIST:BAND3:STD 1")

设定第3点的标称值为1F(单位依据功能选择,比如功能Cp-Q)

WrtCmd("LIST:BAND3:STD?")

返回1,表明当前第3点的标称值为1F(单位依据功能选择,比如功能Cp-Q)

8.1.9.35 LIST:BAND<n>: DELay

描述:设定第 n 点的步进延时。可以查询第 n 点的步进延时。

命令语法: LIST:BAND<n>:DELay <value> / MIN / MAX

查询语法: LIST:BAND<n>:DELay?

查询返回: <NR3><NL^END>

参数:

<value>: NR1,NR2,NR3 据格式。

MIN:设定步进延时为 0s

MAX:设定设定步进延时为60s

例:

WrtCmd("LIST:BAND3:DELay 2")

设定第3点步进延时为2秒

WrtCmd("LIST:BAND3:DELay?")

返回 2,不能当前第 3点步进延时为 2秒

8.1.9.36 LIST:DISPlay

描述:设定列表扫描时的显示设置。

命令语法: LIST:DISPlay:<Item> <value> / ON / OFF

参数:

<ltem>具体如下:

FREQ 设定显示项目:频率 ACLV 设定显示项目:AC 电平

BIAS 设定显示项目:DC 偏置 FUNC 设定显示项目:功能

MAIN 设定显示项目:主参数 MPER 设定显示项目:主参数(%)

COMP 设定显示项目:比较结果 DCLV 设定显示项目:DC 电平

ACRNG 设定显示项目:AC 量程 CH 设定显示项目:通道

ALOW 设定显示项目:A 下限 AHIGH 设定显示项目:A 上限

BLOW 设定显示项目:B 下限 BHIGH 设定显示项目:B 上限

SPEED 设定显示项目:速度 SUB 设定显示项目:副参数

STD 设定显示项目:标称值 DELAY 设定显示项目:延时

AVG 设定显示项目:平均 DCIRNG设定显示项目:DCI 量程

DCRNG 设定显示项目:DC 量程

<value>: NR1 数据格式

查询语法: LIST: DISPlay:<ltem>?

查询返回: <NR3>,<ON/OFF><NL^END>

例:

WrtCmd("LIST:DISPlay:MAIN ON")

在列表扫描中显示主参数结果

WrtCmd("LIST:DISPlay:MAIN 3")

设定主参数的显示顺序为 3,如果前面 1、2 没打开显示,主参数的显示将排在第 1 列

WrtCmd("LIST:DISPlay:MAIN?")

返回 3,ON; 表明当前主参数的显示顺序为 3 且显示该参数。如果前面 1、2 没打开显示,主参数的显示将排在第 1 列

8.1.9.37 LIST:RESTart

描述:将列表扫描从第1点重新开始扫描。

命令语法: LIST:RESTart

8.1.9.38 LIST:CLEar:ALL

描述:清除所有扫描点的设置数据。

命令语法: LIST:CLEar:ALL

8.1.10 APERture 子系统

描述用于设定测量的速度,测量中使用的平均次数。字符?可以查询当前的测量的速度,测量中使用的平均次数。

命令语法:

APERture FAST / MEDium / SLOW[,<value>]

查询语法: APERture?

查询返回: FAST / MEDium / SLOW[,<NR1>]<NL^END>

参数:

FAST: 快速约 130 次/秒,。

MEDium: 中速 11 次/秒

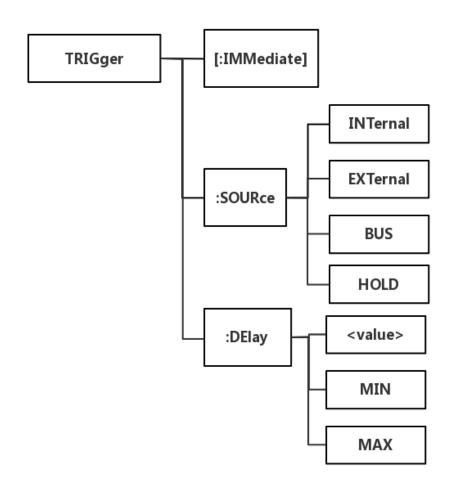
SLOW: 慢速 4 次/秒

<value> 1 至 255 (NR1) 平均数字。

例:

WrtCmd("APER MED,55");

设定测量的速度为中速,测量中使用的平均次数为55


WrtCmd("APER?");

返回 MED,55, 表明当前测量的速度为中速, 测量中使用的平均次数为 55

8.1.11 TRIGger 子系统

TRIGger 子系统命令集用于设定仪器的触发源,触发后的延时,和触发仪器测量。

命令树:

8.1.11.1 TRIGger:IMMediate

描述: 执行触发仪器测量一次。

命令语法: TRIGger[:IMMediate]

8.1.11.2 TRIGger:SOURce

描述:设定仪器的触发源模式,字符?可以查询当前的触发源模式。

命令语法: TRIGger:SOURce INTernal / EXTernal / BUS / HOLD

查询语法: TRIGger:SOURce?

查询返回: INT / EXT / BUS / HOLD<NL^END>

参数:

INTernal 被仪器自动触发,是仪器的默认设置。

EXTernal 被 HANDLER 接口触发。

BUS 被 RS232 接口/ GPIB 接口/USB接口/LAN接口等用指令触发。

HOLD 在面板按 TRIGGER 键触发。

例:

WrtCmd("TRIG:SOUR BUS");

设定仪器的触发源模式为总线模式

WrtCmd("TRIG:SOUR?");

返回 BUDS,表明当前仪器的触发源模式为总线模式

8.1.11.3 TRIGger:DELay

描述: 设定仪器触发后的延时时间,字符?可以查询当前的延时参数。

命令语法: TRIGger:DELay <value> / MIN / MAX

查询语法: TRIGger:DELay?

查询返回: <NR3><NL^END>

参数:

<value>: NR1,NR2,NR3 据格式,以 1mS 为分辨率的 0—60 秒时间。。

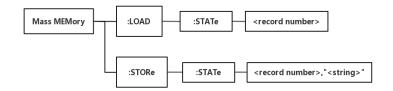
MIN:设定延时参数为0秒

MAX:设定延时参数为60秒

例:

WrtCmd("TRIG:DEL 5S");

设定延时参数为5秒


WrtCmd("TRIG:DEL?");

返回5,表明当前延时参数为5秒

8.1.12 FETCh? 子系统

FETCh? 子系统命令集用于让 TH2838/TH2839 输出一个测量结果。

命令树:

8.1.12.1 FETCh[:IMP]?

描述: 使 TH2838/TH2839 把最后一次测量的结果送到 TH2838/TH2839 的 输出缓冲区。

查询语法: FETCh[:IMP]?

例: (最后一次测量结果传输)

WrtCmd("TRIG:SOUR BUS");

WrtCmd("TRIG");

WrtCmd("FETC?");

TH2838/TH2839 提供 ASCII 码用于结果数据传输,详情如下。

1. 在元件测量显示,档号显示,档计数显示中 ASCⅡ 数据输出格式描述下示:

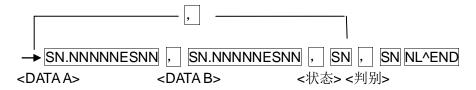
SN.NNNNNESNN , SN.NNNNNESNN , SN 或 SNN NL^END <DATA A> <DATA B> <状态> <档号>

- 参数<DATA A>,<DATA B>格式: <DATA A> (主参测量数据), <DATA B> (副参测量数据) 使用 12 位 ASII 码格式,如下: SN.NNNNNESNN (S: +/-, N: 0 到 9, E: Exponent Sign(指数标志))
- <状态>格式:使用 2 位 ASCII 码特征长度格式 SN (S: +/-, N: 0~4), 当取如下测量数据时,<状态>数据将显示测量状态。

状态	描述
-1	(数据缓冲存储器中) 无数据
0	普通测量数据
+1	模拟电桥不平衡
+2	A/D 转换不工作
+3	信号源过载
+4	恒压不可调

表 8-1 状态

注: 当<状态>为-1,1 或 2 时,测量数据为+9.99999E+37。当<状态>为 0,3 或 4 时,实际测量数据超出。


■ <档号>格式:使用2到3位 ASCII 码特征数据长度 SN 或 SNN (S: +/-, N:0到9),该数据显示档号分选结果,如下示:

数据	分选结果
0	超差
+1	档1
+2	档 2
+3	档 3
+4	档 4
+5	档 5
+6	档 6
+7	档 7
+8	档8
+9	档 9
+10	附属档

表 8-2 档号

注: 只有仪器比较功能置于 ON (打开) 时, <档号>数据才将显示。

2. 在列表扫描显示页中 ASCII 数据输出格式如图 6, 回路数据即代替扫描 点编号。

- 参数<DATA A>,<DATA B>,<状态>描述同上
- <判别>描述如下: <输入/输出>格式,该数据显示列表扫描比较功能结果。当列表扫描测量比较功能关闭(OFF)时,<输入/输出>数据输出结果为0。

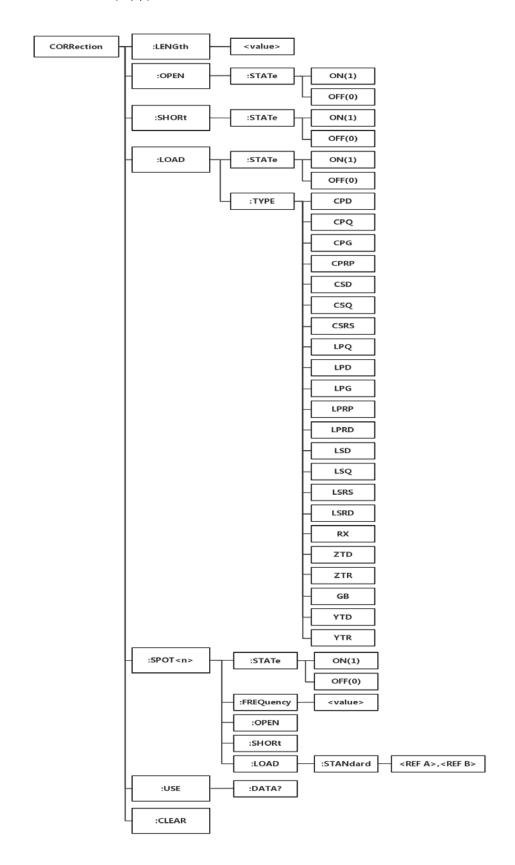
<输入/输出>数据输出格式使用 2 位 ASCII 码固定长度格式,如下: SN (S: +/-, N: 0 到 1)

数据	结果
-1	偏低
0	符合
+1	偏高

表 8-3 判别

8.1.12.2 :FETCH:SourceMONitor

描述:返回电压监视与电流监视的结果查询语法:


:FETCH:SourceMONitor:VAC?

:FETCH:SourceMONitor:IAC?

8.1.13 CORRection 子系统

CORRection 子系统命令集用于设定用户校正功能,开路,短路,负载校正的设定。

命令树:

8.1.13.1 CORRection:LENGth

描述:设定仪器的校正电缆长度,字符?可以查询当前设定电缆长度。

命令语法: CORRection:LENGth <value>

查询语法: CORRection:LENGth?

查询返回: <NR1><NL^END>

参数<value>是 0, 1, 2 或 4 加后缀单位 M 的参数。

例:

WrtCmd("CORR: LENG 1M");

设定仪器的电缆长度为1米

WrtCmd("CORR: LENG?");

返回1,表明当前仪器的电缆长度为1米

8.1.13.2 CORRection: OPEN

描述: 执行 51 个预置测试点开路校正数据(TH2838/TH2839 为 51 个预置测试点)。

命令语法: CORRection:OPEN

8.1.13.3 CORRection: OPEN: STATe

描述: 设定仪器的开路校正功能,字符? 可以查询当前仪器的开路校正功能状态。

命令语法: CORRection:OPEN:STATe ON / OFF / 1 / 0

查询语法: CORRection:OPEN:STATe?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价,允许开路校正

字符 0 与 OFF 等价,禁止开路校正

例:

WrtCmd("CORR:OPEN:STAT ON")

设定仪器的开路校正功能为开启状态

WrtCmd("CORR:OPEN:STAT?")

返回 1, 表明当前仪器的开路校正功能为开启状态

8.1.13.4 CORRection:SHORt

描述: 执行 51 个预置测试点短路校正数据(TH2838/TH2839 为 51 个预置测试点)。

命令语法: CORRection:SHORt

例如: WrtCmd("CORR:SHOR")

8.1.13.5 CORRection:SHORt:STATe

描述:设定仪器短路校正功能,字符?可以查询当前的仪器的短路校正状态。

命令语法: CORRection:SHORt:STATe ON / OFF / 1 / 0

查询语法: CORRection:SHORt:STATe?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价,允许短路校正

字符 0 与 OFF 等价,禁止短路校正

例:

WrtCmd("CORR:SHOR:STAT ON")

设定仪器的短路校正功能为开启状态

WrtCmd("CORR:SHOR:STAT?")

返回 1, 表明当前仪器的短路校正功能为开启状态

8.1.13.6 CORRection:LOAD:STATe

描述: 设定仪器负载校正功能,字符? 可以查询当前的负载校正功能状态。

命令语法: CORRection:LOAD:STATe ON / OFF / 1 / 0

查询语法: CORRection:LOAD:STATe?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价,允许负载校正

字符 0 与 OFF 等价,禁止负载校正

例:

WrtCmd("CORR:LOAD:STAT ON")

设定仪器的负载校正功能为开启状态

WrtCmd("CORR:LOAD:STAT?")

返回 1,表明当前仪器的负载校正功能为开启状态

8.1.13.7 CORRection:LOAD:TYPE

描述:设定仪器负载校正的被测组合参数功能,字符?可以查询当前的组合参数类型。

命令语法: CORRection:LOAD:TYPE <function>

查询语法: CORRection:LOAD:TYPE?

查询返回: <function><NL^END>

参数<function>:

CPD	设定"功能"为 Cp-D	LPRP	设定"功能"为 Lp-Rp
CPQ	设定"功能"为 Cp-Q	LSD	设定"功能"为 Ls-D
CPG	设定"功能"为 Cp-G	LSQ	设定"功能"为Ls-Q
CPRP	设定"功能"为 Cp-Rp	LSRS	设定"功能"为 Ls-Rs
CSD	设定"功能"为 Cs-D	RX	设定"功能"为 R-X
CSQ	设定"功能"为 Cs-Q	ZTD	设定"功能"为 Ζ-θ°
CSRS	设定"功能"为 Cs-Rs	ZTR	设定"功能"为 Z-θr
LPQ	设定"功能"为 Lp-Q	GB	设定"功能"为 G-B
LPD	设定"功能"为 Lp-D	YTD	设定"功能"为 Y-θ°
LPG	设定"功能"为 Lp-G	YTR	设定"功能"为 Y-θr

例:

WrtCmd("CORR:LOAD:TYPE CPD")

设定仪器负载校正的被测组合参数功能为 Cp-D

WrtCmd("CORR:LOAD:TYPE?")

返回 CPD,表明当前仪器负载校正的被测组合参数功能为 Cp-D

8.1.13.8 CORRection:SPOT<n>:STATe

描述:用于设定特定校正点,字符?可以查询当前校正点的状态。

命令语法: CORRection:SPOT<n>:STATe ON / OFF / 1 / 0

查询语法: CORRection:SPOT<n>:STATe?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价

字符 0 与 OFF 等价

<n>: 1-10 个点其中的一个

例:

WrtCmd("CORR:SPOT1:STAT ON")

设定校正点1的校正功能为开启状态

WrtCmd("CORR:SPOT1:STAT?")

返回 1,表明当前校正点 1 的校正功能为开启状态

8.1.13.9 CORRection:SPOT<n>:FREQuency

描述: 设定特定校正点的频率,字符?可以查询当前校正点频率。

命令语法: CORRection:SPOT<n>:FREQuency <value>

查询语法: CORRection:SPOT<n>:FREQuency?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式加 HZ、kHZ 和 MHZ 后缀的参数。 范围应在 20HZ ~ 8.5MHZ(TH2838/TH2839)之间,否则返回数据出错。

<n>: 1 - 10 个点其中的一个

例:

WrtCmd("CORR:SPOT1:FREQ 2kHZ")

设置校正点 1 的频率为 2kHZ

WrtCmd("CORR:SPOT1:FREQ?")

返回 2k, 表明当前校正点 1 的频率为 2kHZ

8.1.13.10 CORRection:SPOT<n>:OPEN

描述:对仪器特定校正点执行开路校正。

命令语法: CORRection:SPOT<n>:OPEN

参数:

<n>: 10 个点其中的一个

例:

WrtCmd("CORR:SPOT1:OPEN")

对校正点1进行开路校正

8.1.13.11 CORRection:SPOT<n>:SHORt

描述:对仪器特定校正点执行短路校正。

命令语法: CORRection:SPOT<n>:SHORt

参数:

<n>: 10 个点其中的一个

例:

WrtCmd("CORR:SPOT1:SHOR");

对校正点1进行短路校正

8.1.13.12 CORRection:SPOT<n>:LOAD:STANdard

描述:对仪器特定校正点标准参考量下的负载校正。可以查询仪器当前当前校正负载校正的标准参考量。

命令语法: CORRection:SPOT<n>:LOAD:STANdard <REF.A>,<REF.B>

查询语法: CORRection:SPOT<n>:LOAD:STANdard?

查询返回: <REF.A>,<REF.B><NL^END>

参数:

<n>: 1~10 个点其中的一个

<REF.A>: NR1, NR2 或 NR3 的数据格式,为主参数的标准参考量

<REF.B>: NR1, NR2或 NR3的数据格式,为副参数的标准参考量

例:

WrtCmd("CORR:SPOT1:LAOD:STAN 0.0017,2");

设定校正点 1 标准参考量下的负载校正 A: 1.7mF, B: 2 (单位依据功能选择,比如功能 Cp-Q)

WrtCmd("CORR:SPOT1:LAOD:STAN?");

返回 0.0017,2, 表明当前校正点 1 标准参考量下的负载校正 A: 1.7mF, B: 2 (单位依据功能选择,比如功能 Cp-Q)

8.1.13.13 CORRection: USE: DATA?

描述: 查询返回 201 个校正点开路/短路/负载校正测量数据。

查询语法: CORRection:USE:DATA?

查询返回:

<open1 A>,<open1 B>,<short1 A>,<short1 B>,<load1 A>,<load1 B>,

<open2 A>,<open2 B>,<short2 A>,<short2 B>,<load2 A>,<load2 B>,

<open3 A>,<open3 B>,<short3 A>,<short3 B>,<load3 A>,<load3 B>,

....,

<open201 A>,<open201 B>,<short201 A>,<short201 B>,<load201
A>,<load201 B>

参数:

<open n A> NR3 数据格式,为校正点 n 处的主参数开路校正数据

<open n B> NR3 数据格式,为校正点 n 处的副参数开路校正数据

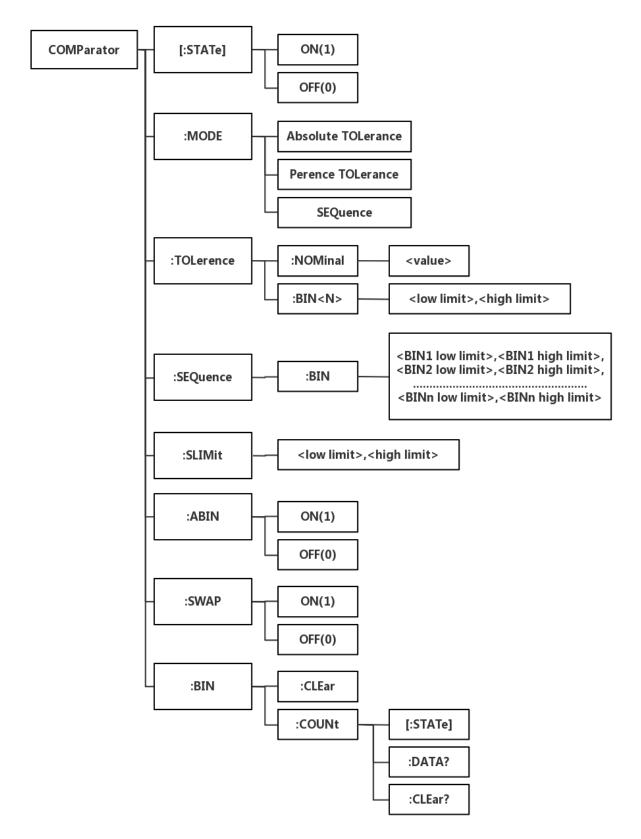
<short n A> NR3 数据格式,为校正点 n 处的主参数短路校正数据

<short n B> NR3 数据格式,为校正点 n 处的副参数短路校正数据

<load n A> NR3 数据格式,为校正点 n 处的主参数负载校正数据

<load n B> NR3 数据格式,为校正点 n 处的副参数负载校正数据

8.1.13.14 CORRection:CLEar


描述:清除所有校正点的校正数据。

命令语法: CORRection:CLEar

8.1.14 COMParator 子系统

COMParator 子系统命令集用于设定档比较器功能,包括比较开关的设定,极限列表的设定。

命令树:

8.1.14.1 COMParator[:STATe]

描述:设定仪器比较功能开启或关闭。可以查询当前比较功能状态。

命令语法: COMParator[:STATe]ON / OFF / 1 / 0

查询语法: COMParator[:STATe]?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价

字符 0 与 OFF 等价

例:

WrtCmd("COMP ON");

设定比较功能开启

WrtCmd("COMP?");

返回1,表明当前比较功能开启

8.1.14.2 COMParator:MODE

描述: 设定仪器比较功能极限方式,字符?可以查询当前设定的极限方式。

命令语法: COMParator:MODE ATOLerance / PTOLerance / SEQuence

查询语法: COMParator:MODE?

查询返回: ATOL/PTOL/SEQ<NL^END>

参数:

ATOLerance 设置绝对误差方式

PTOLerance 设置相对误差方式

SEQuence 设置连续方式

例:

WrtCmd("COMP:MODE ATOL");

设定仪器比较功能极限方式为绝对误差方式

WrtCmd("COMP:MODE?");

返回ATOL,表明当前仪器比较功能极限方式为绝对误差方式

8.1.14.3 COMParator:TOLerance:NOMinal

描述:设定比较功能误差方式的标称量(该功能只在极限方式被设为误差模式时有效)。可以查询当前仪器设定误差模式的标称量。

命令语法: COMParator:TOLerance:NOMinal <value>

查询语法: COMParator:TOLerance:NOMinal?

查询返回: <value><NL^END>

参数:

〈value>: NR1, NR2 或 NR3 数据格式的标称量。

例:

WrtCmd("COMP:TOL:NOM 100E-12");

设定比较功能误差方式的标称量(主参数)为 100pF(单位依据功能选择, 比如功能 Cp-Rp)

WrtCmd("COMP:TOL:NOM?");

返回 100E-12, 表明当前比较功能误差方式的标称量(主参数)为 100pF(单位依据功能选择,比如功能 Cp-Rp)

8.1.14.4 COMParator:TOLerance:BIN<n>

描述:设定比较功能误差模式各档上下限极限数值(该功能只在极限方式被设定为误差模式时有效)。可以查询当前仪器设定各档上下限数值。

命令语法: COMParator:TOLerance:BIN<n><low limit>,<high limit>

查询语法: COMParator:TOLerance:BIN<n>?

查询返回: <low limit>,<high limit><NL^END>

参数:

<n>: 1到9(NR1): 档号数

low limit>: NR1, NR2 或 NR3 格式数据: 下限数据

<high limit>: NR1, NR2 或 NR3 格式数据: 上限数据

注:下限数据应小于上限数据,否则提示出错信息。

例:

WrtCmd("COMP:TOL:BIN1 -5,5");

设定比较功能误差模式 1 档下限-5F,上限 5F(单位依据功能选择,比如功能 Cp-Rp)

WrtCmd("COMP:TOL:BIN1?");

返回-5,5,表明当前比较功能误差模式 1 档下限-5F,上限 5F(单位依据功能选择,比如功能 Cp-Rp)

8.1.14.5 COMParator:SEQuence:BIN

描述:设定比较功能连续模式上下限数据(该功能只在极限方式被设定为连续模式时有效)。可以查询仪器当前设定各档上下限数值。

命令语法: COMParator:SEQuence:BIN <BIN1 low limit>,<BIN1 high limit>,

<BIN2 high limit>,..., <BINn high limit>

查询语法: COMParator:SEQuence:BIN?

查询返回: <BIN1 low limit>,<BIN1 high limit>,<BIN2 high limit>,...,

<BINn high limit><NL^END>

参数:

<BIN1 low limit> NR1,NR2 或 NR3 数据格式,档 1 的下限数值

<BIN1 high limit> NR1,NR2 或 NR3 数据格式,档 1 的上限数值

<BINn high limit> NR1,NR2 或 NR3 数据格式,档 n 的上限数值(n 最大为 9)

注:下限小于上限。

例:

WrtCmd("COMP:SEQ:BIN 10,20,30,40,50");

设定比较功能连续模式下 1 档下限 10,上限 20,2 档上限 30,3 档上限 40,4 档上限 50(单位依据功能选择,比如功能 Q-Cp)

WrtCmd("COMP:SEQ:BIN?");

返回 10,20,30,40,50,表明当前比较功能连续模式下 1 档下限 10,上限 20,2 档上限 30,3 档上限 40,4 档上限 50(单位依据功能选择,比如功能 Q-Cp)

8.1.14.6 COMParator: Secondary LIMit

描述: 设定仪器比较功能副参数上下限数值。可以查询仪器当前副参数上下限数值。

命令语法: COMParator:SLIMit < low limit>,< high limit>

查询语法: COMParator:SLIMit?

查询返回: <low limit>,<high limit><NL^END>

参数:

<low limit>: NR1, NR2 或 NR3 格式数据, 为下限数值

<high limit>: NR1, NR2或 NR3格式数据,为上限数值

注:上限应大于下限,否则提示出错信息。

例:

WrtCmd("COMP:SLIM 0.001,0.002")

设定仪器比较功能副参数下限 1mF,上限 2mF(单位依据功能选择,比如功能 Cp-Rp)

WrtCmd("COMP:SLIM?")

返回 0.001,0.002,表明当前仪器比较功能副参数下限 1mF,上限 2mF(单位依据功能选择,比如功能 Cp-Rp)

8.1.14.7 COMParator: Auxiliary BIN

描述:设定档计数附属档开关。可以查询仪器当前附属档开关情况。

命令语法: COMParator:Auxiliary BIN ON / OFF / 1 / 0

查询语法: COMParator:Auxiliary BIN?

查询返回: <NR1><NL^END>

参数:

字符1与 ON 等价

字符 0 与 OFF 等价

例:

WrtCmd("COMP:ABIN ON")

设定档计数附属档为开启状态

WrtCmd("COMP:ABIN?")

返回 1, 表明当前档计数附属档为开启状态

8.1.14.8 COMParator:SWAP

描述:设定主副参数对调比较模式开关,例如:功能参数: Cp-D,选择: SWAP模式为 ON,则功能参数变为: D-Cp; 此时 1~9 档参数极限设置变为设定 D 的上下限,2and 档设置 Cp 极限。亦即选择 ON,则主副参数进行对调比较;反之,选择 OFF,按原顺序比较。可以查询当前仪器设定主副参数对调比较模式开关情况。

命令语法: COMParator:SWAP ON / OFF / 1 / 0

查询语法: COMParator:SWAP?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价

字符 0 与 OFF 等价

例如:

WrtCmd("COMP:SWAP ON");

设定主副参数对调比较模式为开启状态

WrtCmd("COMP:SWAP?");

返回 1,表明当前主副参数对调比较模式为开启状态

8.1.14.9 COMParator:BIN:CLEar

描述:清除极限列表设置各档极限设置数据。

命令语法: COMParator:BIN:CLEar

8.1.14.10 COMParator:BIN:COUNT[:STATe]

描述:设定档计数功能开关(ON/OFF),可以查询当前仪器设定档计数开关情况。

命令语法: COMParator:BIN:COUNt[:STATe] ON / OFF / 1 / 0

查询语法: COMParator:BIN:COUNt[STATe]?

查询返回: <NR1><NL^END>

参数:

字符1与 ON 等价

字符 0 与 OFF 等价, 相当于 FIX

例:

WrtCmd("COMP:BIN:COUN ON")

设定档计数功能为开启状态

WrtCmd("COMP:BIN:COUN?")

返回1,表明当前档计数功能为开启状态

8.1.14.11 COMParator:BIN:COUNt:DATA

描述:查询档计数比较结果。

查询语法: COMParator:BIN:COUNt:DATA?

查询返回: <BIN1 count>,<BIN2 count>,...,<BIN9 count>,<OUT OF BIN count>,<AUX BIN count><NL^END>

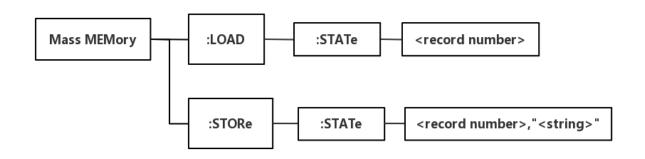
参数:

<BIN1-9 count>: NR1 数据格式,为 1-9 档的计数结果

<OUT OF BIN count>: NR1 数据格式,为超差档的计数结果

<AUX BIN count>: NR1 数据格式,为附属档的计数结果

8.1.14.12 COMParator:BIN COUNT:CLEar


描述:清除所有档计数结果。

命令语法: COMParator:BIN:COUNt:CLEar

8.1.15 Mass MEMory 子系统

Mass MEMory 子系统命令集用于文件的保存与加载。

命令树:

8.1.15.1 MMEMory:LOAD:STATe

描述:加载已保存的文件。

命令语法: MMEMory:LOAD:STATe <value>

参数:

<value>: 0 到 39 (NR1) 的文件序号。

例:

WrtCmd("MMEM:LOAD:STAT 1");

加载 1 号文件

8.1.15.2 MMEMory:STORe:STATe

描述:保存当前仪器的设置到一个文件。

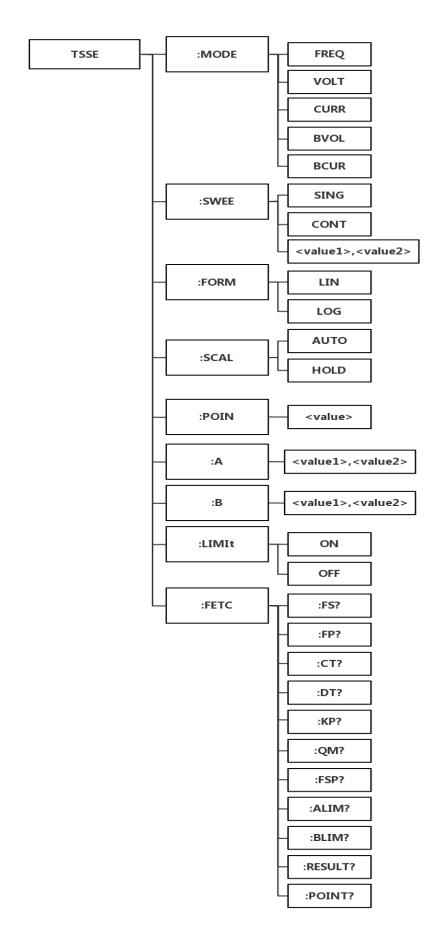
命令语法: MMEMory:STOR:STATe <value>,"<string>"

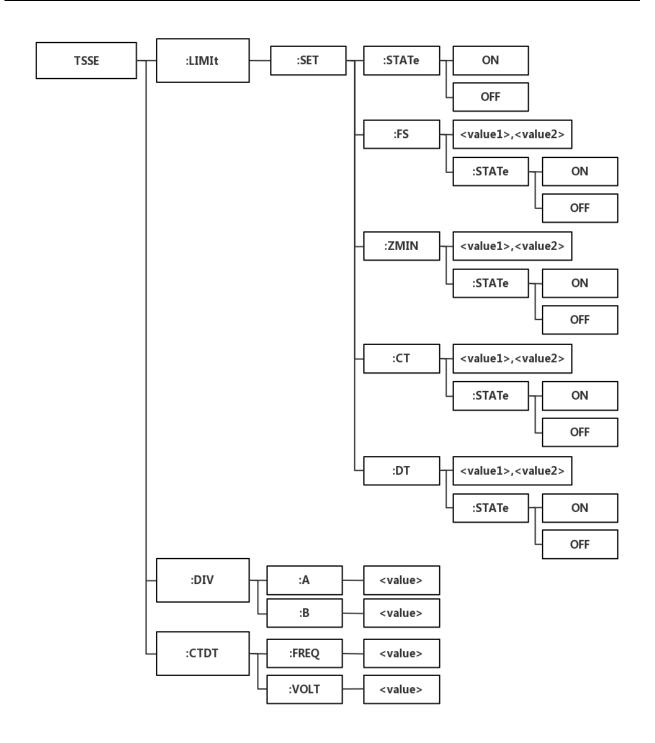
参数:

<value>: 0 到 39 (NR1) 的文件序号。

<string>: ASCII 字符串(最长 16 个)

例:


WrtCmd("MMEM:STOR:STAT 1, "Resistor meas"")


保存当前仪器的设置到1号文件,文件名 Resistor meas

WrtCmd("MMEM:STOR:STAT 1");

保存当前仪器的设置到1号文件,按默认文件名存储。

8.1.16 TSSE 扫描命令树

8.1.16.1 TSSE:MODE

描述:设置扫描方式。

命令语法: TSSE:MODE FREQ / VOLT / CURR / BVOL / BCUR 参数:

FREQ:设置扫描方式为频率。

VOLT:设置扫描方式为电压(V)。

CURR:设置扫描方式为电流(A)。

BVOL:设置扫描方式为偏置电压(V)。

BCUR:设置扫描方式为偏置电流(A)。

例:

WrtCmd("TSSE:MODE FREQ")

设置当前仪器的扫描方式为频率

8.1.16.2 TSSE:SWEE

■ 描述:设置扫描触发方式。

命令语法: TSSE:SWEE SING / CONT

参数:

SING:设置扫描单次触发。

CONT:设置连续扫描。

例:

WrtCmd("TSSE:SWEE SING")

设置当前仪器的扫描触发方式为单次触发

■ 描述:设置扫描范围。

命令语法: TSSE:SWEE <value1>,<value2>

参数:

<value>: NR1, NR2 或 NR3 数据格式。(数据格式与单位依据扫描方式的参数设定)

例:

WrtCmd("TSSE:MODE FREQ")

WrtCmd("TSSE:SWEE 100,1k")

设置当前仪器的扫描频率,且频率范围为 100Hz~1kHz

8.1.16.3 TSSE:FORM

描述:设置扫描图坐标模式。

命令语法: TSSE:FORM LIN / LOG

参数:

LIN:设置线性坐标。

LOG:设置对数坐标。

例:

WrtCmd("TSSE:FORM LIN")

设置当前仪器的扫描坐标为线性

8.1.16.4 TSSE:SCAL

描述:设置扫描图标尺模式。

命令语法: TSSE:SCAL AUTO / HOLD

参数:

AUTO: 设置标尺自动调整一次,调整完后恢复成保持。

HOLD:设置固定标尺。

例:

WrtCmd("TSSE:SCAL HOLD")

设置当前仪器的扫描固定标尺

8.1.16.5 TSSE:POIN

描述:设置扫描点数。

命令语法: TSSE:POIN <value>

参数:

<value>: NR1 数据格式,范围为51、101、201、401 或801

例:

WrtCmd("TSSE:POIN 51")

设置当前仪器的扫描点数为51个

8.1.16.6 TSSE:A

描述: 设置主参数 A 坐标的最小值和最大值。

命令语法: TSSE:A <value1>,<value2>

参数:

<value>: NR1, NR2 或 NR3 数据格式, 后缀依据主参数设置。

例:

WrtCmd("TSSE:A 1n,1m")

设置当前仪器的主参数A坐标的最小值为1nF,最大值1mF(根据功能Cp-R)

8.1.16.7 TSSE:B

描述:设置副参数 B 坐标的最小值和最大值。

命令语法: TSSE:B <value1>,<value2>

参数:

<value>: NR1, NR2 或 NR3 数据格式,后缀依据副参数设置。

例:

WrtCmd("TSSE:B 1,100")

设置当前仪器的主参数 B 坐标的最小值为 1Ω ,最大值 100Ω (根据功能 Cp-R)

8.1.16.8 TSSE:LIMI

描述: 设置极值显示的开关。

命令语法: TSSE:LIMI ON / OFF

例:

WrtCmd("TSSE:LIMI ON")

设置当前仪器打开极值显示

8.1.16.9 TSSE:FETC:FS?

描述:查询谐振频率。

查询语法: TSSE:FETC FS?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式, 后缀可加 k 或 M, 也可不加。

例:

WrtCmd("TSSE:FETC FS?")

返回 100,表明当前仪器的扫描谐振频率为 100Hz

8.1.16.10 TSSE:FETC:FP?

描述: 查询反谐振频率。

查询语法: TSSE:FETC FP?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式, 后缀可加 k 或 M, 也可不加。

例:

WrtCmd("TSSE:FETC F?")

返回 100, 表明当前仪器的扫描反谐振频率为 100Hz

8.1.16.11 TSSE:FETC:CT?

描述: 查询自由电容值。

查询语法: TSSE:FETC CT?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式,后缀可加 m、 μ 、n 或 p,也可不加。

例:

WrtCmd("TSSE:FETC CT?")

返回 100n,表明当前仪器的扫描自由电容值为 100nF

8.1.16.12 TSSE:FETC:DT?

描述:查询损耗值。

查询语法: TSSE:FETC DT?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2或 NR3数据格式。

例:

WrtCmd("TSSE:FETC DT?")

返回 10, 表明当前仪器的损耗值为 10

8.1.16.13 TSSE:FETC:KP?

描述: 查询 Kp 值(Kp 计算详见 3.5.2)。

查询语法: TSSE:FETC KP?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式。

例:

WrtCmd("TSSE:FETC KP?")

返回 0.1, 表明当前仪器的 kp 值为 0.1

8.1.16.14 TSSE:FETC:QM?

描述: 查询 Qm 值(Qm 计算详见 3.5.2)。

查询语法: TSSE:FETC QM?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2或 NR3数据格式。

例:

WrtCmd("TSSE:FETC QM?")

返回 0.1,表明当前仪器的 Qm 值为 0.1

8.1.16.15 TSSE:FETC:FSP?

描述: 查询 fs 与 fp 的差值(差值计算详见 3.5.2)。

查询语法: TSSE:FETC FSP?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式,后缀可加 m、μ、n 或 p,也可不加。

例:

WrtCmd("TSSE:FETC FSP?")

返回 100, 表明当前仪器的 fs 与 fp'差值为 100Hz

8.1.16.16 TSSE:FETC:ALIM?

描述: 查询主参数 A 测量结果的最大值与最小值,以及对应扫描点。

查询语法: TSSE:FETC ALIM?

查询返回: <max value>,<point1>,<min value>,<point2><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式, 后缀依据主参数设置。

<point>: 最大、最小值对应扫描点。

例:

WrtCmd("TSSE:FETC ALIM?")

返回 1m,5,10n,21,表明主参数 A 测量结果的最大值为 1mF 在第 5 扫描点,最小值为 10nF 在第 21 扫描点(根据功能 Cp-R)

8.1.16.17 TSSE:FETC:BLIM?

描述: 查询副参数 B 的测量结果最大值与最小值,以及对应扫描点。

查询语法: TSSE:FETC BLIM?

查询返回: <max value>,<point1>,<min value>,<point2><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式, 后缀依据副参数设置。

<point>: 最大、最小值对应扫描点。

例:

WrtCmd("TSSE:FETC BLIM?")

返回 1,5,10,21,表明主参数 A 测量结果的最大值为 1Ω 在第 5 扫描点,最小值为 10Ω 在第 21 扫描点(根据功能 Cp-R)

8.1.16.18 TSSE:FETC:RESULT?

描述: 查询所有扫描点主副参数测量结果。

查询语法: TSSE:FETC RESULT?

查询返回: <A value1>,<B value1>,<A value2>,<A value2>.....<A

valuen><B valuen><NL^END>

参数:

<valuen>: NR1, NR2 或 NR3 数据格式,第 n 个扫描点对应的主副参数测量值,后缀依据主副参数设置。

n: 取决于设置的扫描点个数(51/101/201/401/801)。

例:

WrtCmd("TSSE:FETC RESULT?")

8.1.16.19 TSSE:FETC:POINT?

描述: 查询所有扫描点值。

查询语法: TSSE:FETC POINT?

查询返回: <value1>,<value2>,<value3>,<value4>.....<valuen><NL^END>

参数:

<valuen>: NR1, NR2 或 NR3 数据格式,第 n 个扫描点对应值。(数据格式与单位依据扫描方式的参数设定)

n: 取决于设置的扫描点个数(51/101/201/401/801)。

例:

WrtCmd("TSSE:MODE FREQ"

WrtCmd("TSSE:POIN 51")

WrtCmd("TSSE:FETC POINT?")

返回 110,120,130.....,610,表明扫描点 1 值为 110Hz,扫描点 2 值为 120Hz......扫描点 51 值为 610Hz

8.1.16.20 TSSE:LIMI:SET:STAT

描述:设置曲线扫描分选总开关。

命令语法: TSSE:LIMI:SET:STAT ON / OFF

例:

WrtCmd("TSSE:LIMI:SET:STAT ON")

设置打开曲线分选总开关

8.1.16.21 TSSE:LIMI:SET:FS

■ 描述:设置 fs 的分选开关。

命令语法: TSSE:LIMI:SET:FS:STAT ON / OFF

例:

WrtCmd("TSSE:LIMI:SET:FS:STAT ON")

设置打开fs 分选开关

■ 描述:设置 fs 的范围。

命令语法: TSSE:LIMI:SET:FS <value1>,<value2>

参数:

<value>: NR1, NR2 或 NR3 数据格式,后缀可加 k 或 M,也可不加。
value1 下限值,value2 上限值。

例:

WrtCmd("TSSE:LIMI:SET:FS 100,1k")

设置当前仪器的扫描谐振频率范围为 100Hz~1kHz

8.1.16.22 TSSE:LIMI:SET:ZMIN

■ 描述:设置 Zmin 的分选开关。

命令语法: TSSE:LIMI:SET:ZMIN:STAT ON / OFF

例:

WrtCmd("TSSE:LIMI:SET:ZMIN:STAT ON")

设置打开 Zmin 分选开关

■ 描述:设置 Zmin 的范围(详见 3.5.2)。

命令语法: TSSE:LIMI:SET:ZMIN <value1>,<value2>

参数:

<value>: NR1, NR2 或 NR3 数据格式。value1 下限值, value2 上限值。

例:

WrtCmd("TSSE:LIMI:SET:ZMIN 1,10")

设置当前仪器的扫描最小阻抗限值为 1Ω~10Ω

8.1.16.23 TSSE:LIMI:SET:CT

■ 描述:设置 Ct 的分选开关。(详见 3.5.1) 命令语法: TSSE:LIMI:SET:CT:STAT ON / OFF

例:

WrtCmd("TSSE:LIMI:SET:CT:STAT ON")

设置打开 Ct 分选开关

■ 描述:设置 Ct 的范围。

命令语法: TSSE:LIMI:SET:CT <value1>,<value2>

参数:

<value>: NR1, NR2 或 NR3 数据格式。value1 下限值, value2 上限值。

例:

WrtCmd("TSSE:LIMI:SET:CT 100n,1m")

设置当前仪器的静态阻抗限值为 100nF~1mF

8.1.16.24 TSSE:LIMI:SET:DT

■ 描述:设置 Dt 的分选开关。

命令语法: TSSE:LIMI:SET:DT:STAT ON / OFF

例:

WrtCmd("TSSE:LIMI:SET:DT:STAT ON")

设置打开 Dt 分选开关

■ 描述:设置 Dt 的范围。

命令语法: TSSE:LIMI:SET:DT <value1>.<value2>

参数:

<value>: NR1, NR2 或 NR3 数据格式。value1 下限值, value2 上限值。

例:

WrtCmd("TSSE:LIMI:SET:DT 1,10")

设置当前仪器的静态电容损耗值限值为 100Hz~1kHz

8.1.16.25 TSSE:DIV:A

描述:设置主参数A的DIV值。

命令语法: TSSE:DIV:A <value>

参数:

<value>: NR1, NR2 或 NR3 数据格式。

例:

WrtCmd("TSSE:DIV:A 1m")

设置当前仪器的 A 扫描坐标幅度为 1mF(根据功能 Cp-R)

8.1.16.26 TSSE:DIV:B

描述:设置副参数B的DIV值。

命令语法: TSSE:DIV:B <value>

参数:

<value>: NR1, NR2 或 NR3 数据格式。

例:

WrtCmd("TSSE:DIV:B 10")

设置当前仪器的 B扫描坐标幅度为10Ω(根据功能 Cp-R)

8.1.16.27 TSSE:CTDT:FREQ

描述:设置 CtDt 的频率值。

命令语法: TSSE:CTDT:FREQ <value>

参数:

<value>: NR1, NR2 或 NR3 数据格式, 后缀可加 k 或 M, 也可不加。

例:

WrtCmd("TSSE:CTDT:FREQ 100")

设置当前仪器的 CtDt 频率为 100Hz

8.1.16.28 TSSE:CTDT:VOLT

描述:设置 CtDt 的电平值。

命令语法: TSSE:CTDT:VOLT <value>

参数:

<value>: NR1, NR2或 NR3数据格式。

例:

WrtCmd("TSSE:CTDT:VOLT 1")

设置当前仪器的 CtDt 电平为 1V

8.2 GPIB 公用命令

●*RST ●*TRG ●*IDN ●*TST

●*ESE ●*SRE ●*ESR ●*STB

●*OPC ●*CLS

8.2.1.1 *RST

用于复位仪器。

命令语法: *RST

8.2.1.2 *TRG

用于触发仪器测量,并且把测量结果送到仪器的输出缓冲。

命令语法: *TRG

8.2.1.3 *CLS

用于清除标准事件状态寄存器,服务请求状态寄存器.

命令语法: *CLS

8.2.1.4 *IDN?

用于返回 TH2838/TH2839 的 ID。

查询语法: *IDN?

查询返回: <manufacturer>,<model>,<firmware>,

<HW_version>,<NL^END>

参数:

<manufacturer>: 给出制造商名称(即 Tonghui)

<model>: 给出机器型号(如TH2839)

<firmware>: 给出软件版本号(如 VER1.0.0)

< HW_version>: 给出硬件版本号(如 HardWare Ver A5.0)

例如: WrtCmd("*IDN?");

8.2.1.5 *TST?

自检查询命令,用于执行内部自检并且给出自检错误信息报告。对于TH2838/TH2839系列产品,查询报告的结果通常为"0",即没有错误。

查询语法: *TST?

查询返回: 0<NL^END>

8.2.1.6 *ESE

(standard Event Status Enable command)命令用于设置标准事件状态寄存器(standard event status register)各开放位。该命令查询返回事件状态允许寄存器的各开放位设置。

命令语法: *ESE<value>

查询语法: *ESE?

查询返回: <value><NL^END>

参数:

<value>: NR1 格式:操作状态寄存器各位的十进制表示方式。

事件状态寄存器的每个字节的定义如下表示:

位号	描述
7	Power On (PON) Bit:电源开启状态位
6	User Request(URQ) Bit:用户请求位
5	Command Error(EME) Bit:命令错误位
4	Execution Error(EXE) Bit:执行错误位
3	Device Dependent Error(DDE) Bit:设备依靠错误位
2	Query Error(QYE) Bit:查询错误位
1	Request Control(RQC) Bit:请求控制位
0	Operation Complete(OPC) Bit:操作完成位

8.2.1.7 *SRE

(Service Request Enable command) 命令用于设置服务状态字节寄存器 (the status byte register) 各开放位。该命令查询返回服务状态字节允许寄存器的当前设置。

命令语法: *SRE<value>

查询语法: *SRE?

查询返回: <value><NL^END>

参数:

<value> 为 NR1 格式:状态字节寄存器各允许位的十进制表示形式。

状态字节寄存器各位定义如下表示:

位号	描述
7	Operation Status Register Summary Bit:操作状态寄存器摘要位
6	RQS(Request Service) Bit:请求服务位
5	Standard Event Status Register Summary Bit:标准事件状态寄存器摘要位
4	MAV(Message Available) Bit:信息有效位
3-0	Always O(zero):始终为 O

8.2.1.8 *ESR?

查询返回标准事件状态寄存器的内容。

查询语法: *ESR?

查询返回: <value><NL^END>

参数:

<value>: NR1格式:标准事件状态寄存器的内容的十进制表示形式。

事件状态寄存器各位的定义如下表示:

位号	描述
7	Power On (PON) Bit:电源开启状态位
6	User Request(URQ) Bit:用户请求位
5	Command Error(EME) Bit:命令错误位
4	Execution Error(EXE) Bit:执行错误位
3	Device Dependent Error(DDE) Bit:设备依靠错误位
2	Query Error(QYE) Bit:查询错误位
1	Request Control(RQC) Bit:请求控制位
0	Operation Complete(OPC) Bit:操作完成位

8.2.1.9 *STB?

读取服务状态字寄存器的内容。该命令的执行不会对状态字寄存器的内容造成影响。

查询语法: *STB?

查询返回: <value><NL^END>

参数:

<value>: NR1 格式,状态字寄存器内容的十进制表示形式。

状态字的各位定义如下表示:

位号	描述
7	Operation Status Register Summary Bit:操作状态寄存器摘要位
6	RQS(Request Service) Bit:请求服务位
5	Standard Event Status Register Summary Bit:标准事件状态寄存器摘要位
4	MAV(Message Available) Bit:信息有效位
3-0	Always O(zero):始终为 O

8.2.1.10 *OPC

用于当 TH2838/TH2839 系列仪器完成对所有待测参数测量时设置标准事件 状态寄存器 OPC 位。当仪器完成所有测量时,该命令将告知仪器在仪器的输出 缓冲器中置数 ASCII 码形式" 1 "即十进制的 49。

命令语法: *OPC

查询语法: *OPC?

查询返回: 1 <NL^END>

例:

OUTPUT 717;"*OPC"!

表示当上一条命令操作执行完成后设置仪器的 OPC 位。

第9章 附录

- 9.1 错误提示
- 9.2 异常现象记录及解释
- 9.3 说明书更改记录

说明书 V1.8------2023/07

增加 LIST 与 TSSE 扫描命令

本说明书所描述的可能并非仪器所有内容,同惠公司有权对本产品的性能、功能、内部结构、外观、附件、包装物等进行改进和提高而不作另行说明!由此引起的说明书与仪器不一致的困惑,可通过封面的地址与我公司进行联系。

常州同惠电子股份有限公司 → 400-624-1118

地址: 江苏省常州市新北区新竹路1号

电话: 0519-85132222 传真: 0519-85109972

Http://www.tonghui.com.cn Email: sales@tonghui.com.cn